AC 牛的学术圈 I(枚举 + 贪心 )

emmm h指数的定义要理解QAQ

给定一位研究者论文被引用次数的数组(被引用次数是非负整数)。编写一个方法,计算出研究者的 h 指数。

h 指数的定义: “一位有 h 指数的学者,代表他(她)的 N 篇论文中至多有 h 篇论文,分别被引用了至少 h 次,其余的 N - h 篇论文每篇被引用次数不多于 h 次。”

示例:

输入: citations = [3,0,6,1,5]
输出: 3 
解释: 给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 3, 0, 6, 1, 5 次。
     由于研究者有 3 篇论文每篇至少被引用了 3 次,其余两篇论文每篇被引用不多于 3 次,所以她的 h 指数是 3。
说明: 如果 h 有多种可能的值,h 指数是其中最大的那个。

思路:

可以将数组排序  从前往后遍历找临界值  有h篇引用>=h次 其余n-h篇引用次数<h 其中h篇可以用n-i表示

由于对计算机科学的热爱,以及有朝一日成为 「Bessie 博士」的诱惑,奶牛 Bessie 开始攻读计算机科学博士学位。

经过一段时间的学术研究,她已经发表了 NN 篇论文,并且她的第 i 篇论文得到了来自其他研究文献的 ci 次引用。

Bessie 听说学术成就可以用 h 指数来衡量。

h 指数等于使得研究员有至少 h 篇引用次数不少于 h 的论文的最大整数 h。

例如,如果一名研究员有 4 篇论文,引用次数分别为 (1,100,2,3),则 h 指数为 2,然而若引用次数为 (1,100,3,3) 则 h 指数将会是 3。

为了提升她的 h 指数,Bessie 计划写一篇综述,并引用一些她曾经写过的论文。

由于页数限制,她至多可以在这篇综述中引用 L 篇论文,并且她只能引用每篇她的论文至多一次

请帮助 Bessie 求出在写完这篇综述后她可以达到的最大 h 指数。

注意 Bessie 的导师可能会告知她纯粹为了提升 h 指数而写综述存在违反学术道德的嫌疑;我们不建议其他学者模仿 Bessie 的行为。

输入格式

输入的第一行包含 N 和 L。

第二行包含 N 个空格分隔的整数 c1,…,cN。

输出格式

输出写完综述后 Bessie 可以达到的最大 h 指数。

数据范围

1≤N≤105,
0≤ci≤105,
0≤L≤105

输入样例1:

4 0
1 100 2 3

输出样例1:

2

样例1解释

Bessie 不能引用任何她曾经写过的论文。上文中提到,(1,100,2,3) 的 h 指数为 2。

输入样例2:

4 1
1 100 2 3

输出样例2:

3

如果 Bessie 引用她的第三篇论文,引用数会变为 (1,100,3,3)。上文中提到,这一引用数的 h 指数为 3。

---------------------------------------------------------------------------------------------------------------------------------

这道题最重要的就是理解题意

1. h 指数的定义

2.只能引用她的论文至多一次,说明每次最多只能 + 1 ,即h指数最大只能是 h + 1

证明一波:

    已求出当前指数为 h,a [ h ] >= h, a [ h + 1 ] < h + 1,  因为数组排序后为逆序,所以 a [ h + 1 ] 最多 + 1 变成 h + 1, 而后面的数据也必定都是 <= h + 1, 所以指数最大只能是 h + 1. 

 如果在 + 1 后 a [ h + 1 ] == h + 1, 那么首先选择这个数,但如果 a [ h + 1 ] < h,  即使是 + 1 后也不可能变成 h + 1,那么最大指数就是 h, 如果 a [ h + 1 ]  == h, 后面排序的数字可能有很多个等于 h 的数据,有 cnt 个等于 h ( 因为要都满足 >= 1, 指数是 h + 1 说明至少有 h + 1 个都大于等于 h + 1 ),当满足条件 cnt <= l 时,指数为 h + 1, 否则为 h.

想象成一个 y = - x 的二维图好像比较好理解OAO

#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;
int n, l, h;
int a[N];
int cnt = 0;
bool cmp(int x, int y){
	return x > y;
}

int main(){
	cin >> n >> l;
	for(int i = 1; i <= n; i ++ ){
		cin >> a[i];
	}
	sort(a + 1, a + n + 1, cmp);
	for(int i = 1; i <= n; i ++ ){
		if(a[i] >= i)
		    h = i;
		else 
		    break;
	}
	if(a[h + 1] < h){
		cout << h << endl;
		return  0;
	}
	for(int i = 1; i <= h + 1; i ++ ){
		if(a[i] == h)
		    cnt++;
	}
	if(l >= cnt)
	    cout << h + 1;
	else
	    cout << h << endl;
	    return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值