八、安装pycharm
1、下载pycharm
前往官网下载对应版本的pycharm。
https://www.jetbrains.com/pycharm/download/#section=linux

2、安装pycharm
将pycharm安装包拷贝到/usr/local目录下,然后解压缩,进入bin目录中,执行pycharm.sh进行安装。



九、部署yolov5项目
1、安装yolov5依赖库
利用pip3安装依赖库的时候,系统会自动安装最新版本的相关依赖包,譬如在安装tensorboard时会自动安装protobuf,但是最新版本的protobuf需要更高版本的python支持,而当前python版本为3.6.9,因此会导致安装失败,这时候可以先安装合适版本的依赖包,然后在安装主包。
1) 更新Cython
pip3 install --upgrade Cython #更新一下这个包 |
2) 更新numpy
Numpy库有些特殊,已经自带了,但是是apt安装的,所以先卸掉原来的,也方便之后包的管理。
首先,查看默认numpy版本信息。

然后,卸载默认numpy库。

最后,安装新版本numpy。

主要命令如下所示:
apt remove python-numpy pip3 install numpy==1.19.4 #比较耗费时间 |
3) 更新matplotlib
系统安装时自带的matplotlib版本是2.1.1,需要升级到3.2.2,这里需要重点提醒,不要升级到太高的版本,因为太高的matplotlib版本是需要更高版本python支持的,而当前python版本是3.6.9。
pip3 install matplotlib==3.2.2 |
查看已经安装包的版本信息,可以使用下面的命令:
pip3 show matplotlib |
如下图所示:

4) 安装scipy
pip3 install scipy==1.4.1 # 这个包安装巨慢,耐心等待 |
5) 安装tqdm
pip3 install tqdm==4.61.2 |
6) 安装seaborn
pip3 install seaborn==0.11.1 #非常耗费时间 |
7) 安装scikit-build
pip3 install scikit-build==0.11.1 # 安装opencv需要这个包 |
8) 安装opencv-python
pip3 install opencv-python==4.5.3.56 # 不出意外也是一个相当漫长的过程 |
9) 安装tensorboard
pip3 install tensorboard==2.5.0 |
10) 更新PyYAML
pip3 install --upgrade PyYAML #升级到最新版本 |
也可以安装指定版本以覆盖旧版本
pip3 install PyYAML==5.4.1 |
11) 安装thop
pip3 install thop |
12) 安装pycocotools
pip3 install pycocotools |
13) 安装ipython
pip3 install ipython |
14) 安装psutil
pip3 install psutil |
15) 安装onnx
在jetson nano上安装onnx pip3 install onnx |
2、安装tensorflow GPU版本
2.1方法一
使用pip3安装TensorFlow,该命令将安装与JetPack 4.6兼容的TensorFlow的最新版本(博主使用该命令成功安装TensorFlow2.7.0,安装过程很漫长,你的JetPack版本若是4.5则将v46改为v45即可):
pip3 install--pre --extra-index-urlhttps://developer.download.nvidia.com/compute/redist/jp/v446 tensorflow
TensorFlow版本2是最近发布的,并且与TensorFlow 1.x并不完全向后兼容。如果您希望使用TensorFlow 1.x软件包,则可以通过将TensorFlow版本指定为小于2来安装它,如以下命令所示:
pip3 install--pre --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v46'tensorflow<2'
2.2方法二
还可以去官网挑选更多版本下载:
下载对应版本的.whl文件然后使用pip命令安装例如:
https://developer.nvidia.com/embedded/downloads
提示:一定要下载与之前安装的jetpack版本相对应的tensorflow版本,否则会出现无法预料的错误。

pip3 install tensorflow-2.7.0+nv22.1-cp36-cp36m-linux_aarch64.whl
3、GPU配置与测试
在yolov5工程项目中,修改detect.py中的device参数配置,设置为空,表示启用GPU。然后利用yolov5s训练得到的“戴口罩检测”模型,进行视频检测测试,fps值基本介于9~11之间。如下图所示:

下面我们将启用tensorRT加速,再观察一下检测效果是否有大的提升。