目录
4.2 安装GPU版本Pytorch和对应torchvision:
一.前言:
YOLO11是Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它建立在以前 YOLO 版本的成功基础上,并引入了新功能和改进,以进一步提高性能和灵活性。YOLO11 旨在快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择,官方代码链接(进不去得用魔法):
ultralytics YOLO11 🚀 (github.com)https://github.com/ultralytics/ultralytics
经过无数踩坑,最终实现了在jetson nano上面配置YOLOv11并且成功使用TensorRT加速推理,因为jetson nano资源有限,YOLOv11模型较大,所以在测试中使用USB摄像头跑yolo11n.pt时FPS大概在7~12,后续会提到一些优化方法。由于jetson nano的局限性,使得在环境部署上面成为一个麻烦,另外在显存上,由于模型较大,很容易出现溢出,也是一个麻烦,本文将记录部署到YOLO运行的过程。
二.基于jetson nano的准备工作:
这里将省略jetson nano的烧录工作,这里附上官方教程:
Jetson Nano 官方引导教程https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit由于局限性,在jetson nano上面也只能烧版本比较老的JetPack4.6.6,在此版本上,包括CUDA 10.2,cuDNN 8.2.1,TensorRT 8.2.1,并且系统自带python版本为3.6,参考JetPack 存档
但是安装Ultralytics所需的python版本为3.8,而且英伟达提供的torch的GPU版本故本文选择使用py3.8的虚拟环境,为了不影响内部环境,故使用python3.8的虚拟环境配置环境。
三.安装所需的软件:
Anaconda3 + Pycharm
3.1 Anaconda3的安装:
Anaconda3的安装建议使用清华源,国外网站下载太慢。
清华大学开源软件镜像站https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Djetson nano的系统架构为aarch64,故选择aarch64.sh。
下载到jetson nano后,在当前目录打开终端(此处下载当前最新)
chmod +x Anaconda3-2024.10-1-Linux-aarch64.sh
./Anaconda3-2024.10-1-Linux-aarch64.sh
Anaconda3安装完成。
3.2 Pycharm的安装:
直接前往官网下载linux版的.tar.gz(Linux ARM64):