目标检测:Jetson Nano配置YOLOv11环境(Pycharm)

 

目录

 一.前言:

二.基于jetson nano的准备工作:

三.安装所需的软件:

3.1 Anaconda3的安装:

3.2 Pycharm的安装:

四.配置环境:

4.1 创建虚拟环境:

4.2 安装GPU版本Pytorch和对应torchvision:

4.3 安装ultralytics库:

五.导入环境:

5.1 下载YOLOv11源码:

5.2 PyCharm导入环境:

5.3 验证环境的正确性:

六.TensorRT推理加速的配置和使用:

6.1 TensorRT的部署:

6.2 TensorRT的使用:

6.2.1 获得.engine 文件:

6.2.2 使用yolo11n.engine:

七.提高jetson nano性能的细节:

八.总结:


一.前言:

        YOLO11Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它建立在以前 YOLO 版本的成功基础上,并引入了新功能和改进,以进一步提高性能和灵活性。YOLO11 旨在快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择,官方代码链接(进不去得用魔法):

ultralytics YOLO11 🚀 (github.com)icon-default.png?t=O83Ahttps://github.com/ultralytics/ultralytics

经过无数踩坑,最终实现了在jetson nano上面配置YOLOv11并且成功使用TensorRT加速推理,因为jetson nano资源有限,YOLOv11模型较大,所以在测试中使用USB摄像头跑yolo11n.ptFPS大概在7~12,后续会提到一些优化方法。由于jetson nano的局限性,使得在环境部署上面成为一个麻烦,另外在显存上,由于模型较大,很容易出现溢出,也是一个麻烦,本文将记录部署到YOLO运行的过程。

二.基于jetson nano的准备工作:

这里将省略jetson nano的烧录工作,这里附上官方教程:

Jetson Nano 官方引导教程icon-default.png?t=O83Ahttps://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit由于局限性,在jetson nano上面也只能烧版本比较老的JetPack4.6.6,在此版本上,包括CUDA 10.2,cuDNN 8.2.1,TensorRT 8.2.1,并且系统自带python版本为3.6,参考JetPack 存档

但是安装Ultralytics所需的python版本为3.8,而且英伟达提供的torchGPU版本故本文选择使用py3.8的虚拟环境,为了不影响内部环境,故使用python3.8的虚拟环境配置环境。

三.安装所需的软件:

Anaconda3 + Pycharm 

3.1 Anaconda3的安装:

Anaconda3的安装建议使用清华源,国外网站下载太慢。

清华大学开源软件镜像站icon-default.png?t=O83Ahttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Djetson nano的系统架构为aarch64,故选择aarch64.sh。

下载到jetson nano后,在当前目录打开终端(此处下载当前最新)

chmod +x Anaconda3-2024.10-1-Linux-aarch64.sh

./Anaconda3-2024.10-1-Linux-aarch64.sh

Anaconda3安装完成。

3.2 Pycharm的安装:

直接前往官网下载linux版的.tar.gzLinux ARM64):

下载:PyCharm : PyCharm Professional

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值