代码随想录训练营Day 52|力扣123.买卖股票的最佳时机III、188.买卖股票的最佳时机IV

1.买卖股票的最佳时机3

代码: 

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<vector<int>> dp(prices.size(),vector<int>(4,0));
        // dp[i][0] 第一次持有股票
        // dp[i][1] 第一次卖出股票
        // dp[i][2] 第二次持有股票
        // dp[i][3] 第二次卖出股票
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        dp[0][2] = -prices[0];
        dp[0][3] = 0;
        
        for(int i = 1; i < prices.size(); i++){
            // 第一次持有股票:前一天就买入了 或 当天第一次买
            dp[i][0] = max(dp[i - 1][0],-prices[i]);
            dp[i][1] = max(dp[i - 1][1],dp[i - 1][0] + prices[i]);
            dp[i][2] = max(dp[i - 1][2],dp[i - 1][1] - prices[i]);
            dp[i][3] = max(dp[i - 1][3],dp[i - 1][2] + prices[i]);
        }

        return dp[prices.size() - 1][3];
    }
};

思路:

dp数组的含义:dp[i]表示在第i天不同的状态所获得的最大利润。

        其中:dp[i][0]表示第一次持有股票的状态;dp[i][1]表示第一次不持有股票的状态

                   dp[i][2]表示第二次持有股票的状态;dp[i][3]表示第二次不持有股票的状态

dp数组的递推公式:

        dp[i][0]:可能前一天就是第一次持有状态了,第i天什么都没做,还是为dp[i-1][0];也可能是当天第一次买入股票,那就是0-prices[i]

        dp[i][1]:可能前一天就是第一次不持有状态了,第i天什么都没做,还是为dp[i-1][1];也可能是当天第一次卖出股票,那就是在第一次买入股票的基础上卖出股票 dp[i-1][0] + prices[i]

        dp[i][2]:可能前一天就是第二次持有状态了,第i天什么都没做,还是为dp[i-1][2];也可能是当天第二次买入股票,那就是在卖出了一次股票的基础上买入股票 dp[i - 1][1] - prices[i]

        dp[i][3]:可能前一天就是第二次不持有状态了,第i天什么都没做,还是为dp[i-1][3];也可能是当天第二次卖出股票,那就是在第二次买入股票的基础上卖出股票 dp[i-1][2] + prices[i]

dp数组的初始化:第0天,dp[0][0] = -prices[i] dp[0][1] = 0当成买入又卖出了。剩下的同理。

dp数组的遍历顺序:正序遍历

犯了很多细节上的问题,嗯。比如什么把i写成0,就是一整个混乱的感觉。

2.买卖股票的最佳时机4

代码:

class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        vector<vector<int>>dp (prices.size(),vector<int>(2*k + 1,0));
        // 第i天对应着2k + 1种状态,第k次持有对应下标为2k-1的元素 第k次不持有对应下标为2k的元素
        for(int i = 0; i < 2*k + 1; i++){
            if(i % 2 == 1){
                dp[0][i] = -prices[0];
            }
        }
        
        for(int i = 1; i < prices.size(); i++){
            // 我们把dp[i][0]看作 无操作 的状态,即为0
            for(int j = 1; j < 2*k + 1; j += 2){
                // 第i次持有
                dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - 1] - prices[i]);
                // 第i次不持有
                dp[i][j + 1] = max(dp[i - 1][j + 1],dp[i - 1][j] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2*k];
    }
};

 思路:其实就是上一道题的升级版

dp数组的含义:

        dp[i][2*k - 1] 第i天第k次持有股票的最大利润

        dp[i][2*k]表示第i天第k次不持有股票的最大利润,其中dp[i][0]表示保持初始状态,利润为0,没有进行任何买卖股票的操作

dp数组的递推公式:

        第k次持有股票有两种可能:前一天就是第k次持有股票的状态,dp[i - 1][ j ];或今天第k次买入股票,那就得在第k - 1次不持有股票的基础上卖出股票,dp[i - 1][ j - 1]

        第k次不持有股票有两种可能:前一天就是第k次不持有股票的状态,dp[i - 1][ j + 1];或今天第k次卖出股票,那就得在第k - 1次买入股票的基础上卖出股票,dp[i - 1][ j ]

dp数组的初始化:

        第0天买入股票的初始化为-prices[i],其余的初始化为0。(不清楚的可以理解为当天多次买入卖出股票后的利润)

dp数组的遍历顺序:正序遍历

注意:这道题的递推公式很容易写错!!我就错了!!要想清楚自己此时写的公式代表什么含义,是哪种状态,想好对应的下标是什么!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值