1.买卖股票的最佳时机3
代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(),vector<int>(4,0));
// dp[i][0] 第一次持有股票
// dp[i][1] 第一次卖出股票
// dp[i][2] 第二次持有股票
// dp[i][3] 第二次卖出股票
dp[0][0] = -prices[0];
dp[0][1] = 0;
dp[0][2] = -prices[0];
dp[0][3] = 0;
for(int i = 1; i < prices.size(); i++){
// 第一次持有股票:前一天就买入了 或 当天第一次买
dp[i][0] = max(dp[i - 1][0],-prices[i]);
dp[i][1] = max(dp[i - 1][1],dp[i - 1][0] + prices[i]);
dp[i][2] = max(dp[i - 1][2],dp[i - 1][1] - prices[i]);
dp[i][3] = max(dp[i - 1][3],dp[i - 1][2] + prices[i]);
}
return dp[prices.size() - 1][3];
}
};
思路:
dp数组的含义:dp[i]表示在第i天不同的状态所获得的最大利润。
其中:dp[i][0]表示第一次持有股票的状态;dp[i][1]表示第一次不持有股票的状态
dp[i][2]表示第二次持有股票的状态;dp[i][3]表示第二次不持有股票的状态
dp数组的递推公式:
dp[i][0]:可能前一天就是第一次持有状态了,第i天什么都没做,还是为dp[i-1][0];也可能是当天第一次买入股票,那就是0-prices[i]
dp[i][1]:可能前一天就是第一次不持有状态了,第i天什么都没做,还是为dp[i-1][1];也可能是当天第一次卖出股票,那就是在第一次买入股票的基础上卖出股票 dp[i-1][0] + prices[i]
dp[i][2]:可能前一天就是第二次持有状态了,第i天什么都没做,还是为dp[i-1][2];也可能是当天第二次买入股票,那就是在卖出了一次股票的基础上买入股票 dp[i - 1][1] - prices[i]
dp[i][3]:可能前一天就是第二次不持有状态了,第i天什么都没做,还是为dp[i-1][3];也可能是当天第二次卖出股票,那就是在第二次买入股票的基础上卖出股票 dp[i-1][2] + prices[i]
dp数组的初始化:第0天,dp[0][0] = -prices[i] dp[0][1] = 0当成买入又卖出了。剩下的同理。
dp数组的遍历顺序:正序遍历
犯了很多细节上的问题,嗯。比如什么把i写成0,就是一整个混乱的感觉。
2.买卖股票的最佳时机4
代码:
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
vector<vector<int>>dp (prices.size(),vector<int>(2*k + 1,0));
// 第i天对应着2k + 1种状态,第k次持有对应下标为2k-1的元素 第k次不持有对应下标为2k的元素
for(int i = 0; i < 2*k + 1; i++){
if(i % 2 == 1){
dp[0][i] = -prices[0];
}
}
for(int i = 1; i < prices.size(); i++){
// 我们把dp[i][0]看作 无操作 的状态,即为0
for(int j = 1; j < 2*k + 1; j += 2){
// 第i次持有
dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - 1] - prices[i]);
// 第i次不持有
dp[i][j + 1] = max(dp[i - 1][j + 1],dp[i - 1][j] + prices[i]);
}
}
return dp[prices.size() - 1][2*k];
}
};
思路:其实就是上一道题的升级版
dp数组的含义:
dp[i][2*k - 1] 第i天第k次持有股票的最大利润
dp[i][2*k]表示第i天第k次不持有股票的最大利润,其中dp[i][0]表示保持初始状态,利润为0,没有进行任何买卖股票的操作
dp数组的递推公式:
第k次持有股票有两种可能:前一天就是第k次持有股票的状态,dp[i - 1][ j ];或今天第k次买入股票,那就得在第k - 1次不持有股票的基础上卖出股票,dp[i - 1][ j - 1]
第k次不持有股票有两种可能:前一天就是第k次不持有股票的状态,dp[i - 1][ j + 1];或今天第k次卖出股票,那就得在第k - 1次买入股票的基础上卖出股票,dp[i - 1][ j ]
dp数组的初始化:
第0天买入股票的初始化为-prices[i],其余的初始化为0。(不清楚的可以理解为当天多次买入卖出股票后的利润)
dp数组的遍历顺序:正序遍历
注意:这道题的递推公式很容易写错!!我就错了!!要想清楚自己此时写的公式代表什么含义,是哪种状态,想好对应的下标是什么!!!