给你一个非负整数数组 nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true
;否则,返回 false
。
输入:nums = [2,3,1,1,4] 输出:true 解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
输入:nums = [3,2,1,0,4] 输出:false 解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标
自己写屎山代码 有几个案例过不去
public class Solution
{
public bool CanJump(int[] nums)
{
if (nums.Length == 1) return true;
if (nums[0] == 0) return false;
int sum = 0;
for (int i = 0; i < nums.Length;)
{
if (nums[i] != 0)
{
sum = sum + nums[i];
int t=nums[i];
if (sum >= nums.Length)
{
return true;
}
else
{
int index = 1;
for (int j = 1; j < nums[i]; j++)
{
int max = 0;
if (nums[i + j] > max)
{
max = nums[i + j];
if (max > nums[i])
{
t=max;
}
}
if(max >= nums.Length - i-j-1)
{
return true ;
}
index++;
}
i = i + t;
}
}
else
{
if (i == nums.Length - 1)
{
return true;
}
else
{
if (nums[i - 1] > 1)
{
i = i-1 + nums[i-1];
}
else
{
return false;
}
}
}
}
return true;
}
}
方法一:贪心
我们可以用贪心的方法解决这个问题。
设想一下,对于数组中的任意一个位置 y,我们如何判断它是否可以到达?根据题目的描述,只要存在一个位置 x,它本身可以到达,并且它跳跃的最大长度为 x+nums[x],这个值大于等于 y,即 x+nums[x]≥y,那么位置 y 也可以到达。
换句话说,对于每一个可以到达的位置 x,它使得 x+1,x+2,⋯,x+nums[x] 这些连续的位置都可以到达。
这样以来,我们依次遍历数组中的每一个位置,并实时维护 最远可以到达的位置。对于当前遍历到的位置 x,如果它在 最远可以到达的位置 的范围内,那么我们就可以从起点通过若干次跳跃到达该位置,因此我们可以用 x+nums[x] 更新 最远可以到达的位置。
在遍历的过程中,如果 最远可以到达的位置 大于等于数组中的最后一个位置,那就说明最后一个位置可达,我们就可以直接返回 True 作为答案。反之,如果在遍历结束后,最后一个位置仍然不可达,我们就返回 False 作为答案。
public class Solution {
public boolean canJump(int[] nums) {
int n = nums.length;
int rightmost = 0;
for (int i = 0; i < n; ++i) {
if (i <= rightmost) {
rightmost = Math.max(rightmost, i + nums[i]);
if (rightmost >= n - 1) {
return true;
}
}
}
return false;
}
}
通过观看官方的代码 我写了如下
public class Solution
{
public bool CanJump(int[] nums)
{
int len = nums.Length;
int Farthestaddress = 0;
for (int i = 0; i < len; ++i)
{
if (i <= Farthestaddress)
{
Farthestaddress = Math.Max(Farthestaddress, i + nums[i]);
if (Farthestaddress >= len - 1)
{
return true;
}
}
}
return false;
}
}
什么是贪心算法
贪心算法是一种在每一步选择中都采取当前状态下最优(或最有利)的选择,从而希望全局最优解的算法策略。这种策略并不能保证总是得到最优解,但在某些问题上它可以产生有效的解决方案。
特点
- 直观:通常容易理解和实现。
- 效率:在某些情况下,算法的效率很高。
- 局部最优:每一步都选择局部最优解,不能保证全局最优。
应用场景
- 图的最小生成树:如 Prim 算法和 Kruskal 算法。
- Dijkstra 算法:用于单源最短路径问题。
- 背包问题:特殊类型(完全背包问题)可以通过贪心算法解决。
- 区间调度问题:如活动选择问题,可以优先选择结束时间最早的活动。
- 哈夫曼编码:用于数据压缩。
实现步骤
- 定义优化问题:首先确定你正在解决的问题,并明确问题的目标。
- 选择贪心策略:根据问题的性质,选择一个贪心的选择策略。
- 细化解决方案:将解决方案细化为一系列步骤,每一步都基于当前最优选择。
- 实现算法:编写代码实现你的贪心策略。
- 验证和测试:测试算法并验证其正确性和效率。
示例
硬币找零问题:假设你有一些不同面额的硬币(例如1元、5元、10元),你希望用最少的硬币数凑出一定金额(比如11元)。一个贪心算法会优先使用面额最大的硬币,直到凑不出更大的面额,然后转向更小的面额。