算法思想:每次在待排序列中寻找出最大或最小值至于当前待排序列末端或前端;
过程演示:
数组={ 35 43 21 65 47 45 }
过程1:
数组={ 35 43 21 65 47 45 }
数组={ 35 43 21 65 47 45 }
数组={ 35 21 43 65 47 45 }
数组={ 35 21 43 65 47 45 }
数组={ 35 21 43 47 65 45 }
数组={ 35 21 43 47 45 65 }
过程2:
数组={ 35 21 43 47 45 65 }
数组={ 21 35 43 47 45 65 }
数组={ 21 35 43 47 45 65 }
数组={ 21 35 43 47 45 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
过程3:
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
过程4:
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
过程5:
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
数组={ 21 35 43 45 47 65 }
过程6:
数组={ 21 35 43 45 47 65 }
稍微观察一下这个过程,我们不难发现在过程2结束的时候就已经排好整个序列了;那么在过程3中就没有任何一个数被交换位置;在此时我们大可以结束循环,提高效率;那么在排序过程中加入一个布尔变量flag来判断是否有数据交换即可;
源代码:
void BubbleSort(int* arr, int n)
{
int end = n+1;
while (end)
{
bool flag = 0;
for (int i = 1; i < end; ++i)
{
if (arr[i - 1] > arr[i])
{
int tem = arr[i];
arr[i] = arr[i - 1];
arr[i - 1] = tem;
flag = 1;
}
}
if (flag == 0)
{
break;
}
--end;
for (int k = 0; k <= n; k++)
cout << arr[k] << " ";
cout << endl;
}
}
时间复杂度:O(n^2);空间复杂度:O(1);
虽然是n的平方,但冒泡排序在一众排序方法里还算比较稳定的一种排序方法。