matlab建模(下)

文章介绍了如何使用感知机模型解决二分类问题,以判断儿童是否符合购买半价票的标准为例。通过身高和体重的数据,利用线性组合和阶跃函数作为激活函数来决策。模型训练涉及权重初始化、数据收集、误差比较以及权重优化过程,其中优化采用的是梯度更新策略。
摘要由CSDN通过智能技术生成

1.神经网络之感知机

  • 感知机(就是根据大量数据训练出的模型,从而用于二分类的线性分类模型

     	例题:景区规定14周岁以下的儿童可买半价票。但儿童往往没有身份证,难以准确判断年龄,
     	如何 根据一个人的身高和体重,判断其是否可以买半价票。
     
     	生物学的神经网络
     		。 神经元的树突收到输入信号(人眼看到屏幕上的光信号)
     		。 信号刺激细胞核,达到一定的阈值后会产生输出
     		。 该输出就是进一步的信号,继续传到下一个神经元
     	感知机模型: 最简单的神经网络
     		。 输入层:输入身高x1,和体重数据x2,相当于神经元接受2个输入信号
     		。 激活函数f:综合判断输入信号是否达到阈值
     		。输出层: 激活函数f就在输出层,求得的函数值就是输出值y
    
    输入层
    输出层
    w1
    w2
    x1
    x2
    f
    y
  • 模型的建立,就是把题目"翻译"成数学语言

  • 分析: 综合考虑身高(x1),和体重(x2),判断此人是否达到了14周岁(阈值b)

     。结果只能"未达到"和“达到"两种情况,可分别用0和1代表
     。函数值只有0和1,可用阶跃函数作为激活函数(激活函数还有sigmoid函数等)
     。阶跃函数: f(t) = if(t>=0){f(t)=1} else {f(t)=0}
     。1.怎么实现"综合考虑"?
     		.线性求和∑wixi(权重wi代表变量xi的重要性)
     		.求和意味着身高和体重(即所有变量)都考虑到了,即"综合考虑"
     		.初始时,权重wi的数值需要根据查文献或常识经验确定。
     。2. 如何根据"综合考虑"的结果进行判断?
     		.”判断标准",就是线性求和与阈值的差值,该差值作为激活函数的自变量
     		.设阈值为b,激活函数的自变量为t = ∑wixi - b。差值越大(t越大),越容易判断。
     。3. 输出结果/题目答案
     		.某种情况:t=∑wixi - b>=0 <==>   f(t) =1 <==> "综合考虑"身高和体重超过了"阈值"
     		.感知机输出值为1,则判定此人达到了14周岁
    
    输入层
    输出层
    (t=∑wixi-b)
    w1
    w2
    x1
    x2
    f(t)
    y
  • 模型
    在这里插入图片描述

  • 学习本质:不断地更改权重wi,使得模型求出的预测值尽可能地接近真实值

    • Step1:模型初始化,人为主观地设置权重wi(查文献、靠经验)
    • Step2:搜集大量地身高x1,体重x2和是否达到14周岁y地数据,作为训练数据集
    • Step3:将x1和x2带入模型,求得估计值y^
    • Step4:将估计值y^与实际值y比较,差别越小越好
    • Step5:若未满足终止条件,则继续对权重wi进行优化,得到新的wi,再重复Step3
    • 终止条件:估计值和实际值地差别小到一定程度为止
  • 问题转化为:如何对权重wi进行优化?
    感知机的优化方法:将wi改为wi+^wi = wi + n(y-y^)xi
    n属于(0,1),通常设为0.1,称为学习率。n过大容易震荡,过小则收敛速度太慢
    当达到终止条件后,此时的wi就作为模型的权重,模型就彻底建好了。

2.层次分析法(AHP)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值