ants.registration(fixed, move, type_of_transform='SyN', initial_transform=None, outprefix='', mask=None, grad_step=0.2, flow_sigma=3, total_sigma=0, aff_metric='mattes', aff_sampling=32, syn_metric='mattes', syn_sampling=32, reg_iterations=(40, 20, 0), verbose=False, **kwargs)
ants.registration(fixed, move, type_of_transform='SyN', initial_transform=None, outprefix='', mask=None, grad_step=0.2, flow_sigma=3, total_sigma=0, aff_metric='mattes', aff_sampling=32, syn_metric='mattes', syn_sampling=32, reg_iterations=(40, 20, 0), verbose=False, **kwargs)
#type_of_transform主要分为以下几种类型
1、Translation:
2、Rigid:刚性-旋转和平移
3、Similarity:相似性转换--也可缩放
4、QuickRigid:刚性(快速可视化修复--旋转和平移)
5、DenseRigid:刚性(度量估计期间采用密集采样)
6、BOLDRigid:刚性(互信息)
7、Affine:仿射变换(平移及线性映射/线性变换)--刚性+缩放
8、AffineFase:快
9、BOLDAffine:与BOLD的结合体
10、TRSAA:前三种类型加仿射变换(俩次)--可能有mask
11、ElasticSyN:对称归一化:仿射和可变性转换(以MI做优化度量和elastic正则化)
12、SyN:对称归一化:仿射和可变性转换(以互信息(MI)做优化度量)
13、SyNRA:对称归一化:刚性、仿射和可变性转换(以互信息做优化度量)
14、SyNOnly:对称归一化:无初始变换,以互信息为优化指标。 假设图像通过初始转换对齐。如果您想运行未屏蔽仿射,然后运行蒙版可变形配准,这可能很有用。
15、SyNCC:SyN--以互相关(CC)作为优化度量
16、SyNabp:SyN的abpBrainExtraction
17、SyNBold:SyN,对BOLD和T1之间的配准进行优化
18、SyNBoldAff:SyN,对BOLD和T1之间的配准进行优化,加仿射
19、SyNAggro:精细配准和变性,时间长
20、TVMSQ:具有均方度量的时变微分同胚(可以保障处理对象之间的结构相似性,防止产生畸变)
注:对给定的两个光滑流形M与N,若f:M→N为双射,且f与f-1均为光滑映射,则称f为微分同胚。该方法配准精度高
21、TVMSQC:具有均方度量的时变微分同胚,用于非常大的变形
下面用SyN举了一个例子
import ants
fi = ants.image_read(ants.get_ants_data('r16'))
mi = ants.image_read(ants.get_ants_data('r64'))
fi = ants.resample_image(fi, (60,60), 1, 0)
mi = ants.resample_image(mi, (60,60), 1, 0)
mytx = ants.registration(fixed=fi, moving=mi, type_of_transform = 'SyN' )
initial_transform(字符串列表(可选))– 转换为前置
outprefix (string) – 输出将使用此前缀命名。
mask (ANTsImage (optional)) – 屏蔽注册。
grad_step (scalar) – 梯度步长(不适用于所有 tx)
flow_sigma (scalar) – 更新字段的平滑
total_sigma (scalar) – 总场的平滑
aff_metric (string) – 仿射部分的度量(GC、遮罩、等值)
aff_sampling (scalar) – syn metric 的 nbins 或 radius 参数
syn_metric (string) – 合成器部分的度量(CC、mattes、meansquares、demons)
syn_sampling (scalar) – syn metric 的 nbins 或 radius 参数
reg_iterations (list/tuple of python:integers) – syn的迭代向量。 我们将根据该向量的长度设置平滑和多分辨率参数。
verbose (boolean) – 请求详细输出(对调试有用)
kwargs (keyword args) – 额外参数