pip 安装保姆级教程

1. Python版本

在安装pip之前,我们需要确认已经正确安装了Python,并确定其版本。在命令行中输入以下命令,确认Python版本:

        python --version

如图所示我的版本是3.7.1

该命令会输出当前安装的Python版本号。如果您还没有安装Python,请先安装Python。
2. 下载get-pip.py文件要安装pip,我们需要下载get-pip.py文件。在浏览器中打开以下链接并下载get-pip.py文件:

        https://bootstrap.pypa.io/get-pip.py

3. 运行get-pip.py文件下载get-pip.py文件后,在命令行中进入该文件所在目录,并运行以下命令来安装pip:

        python get-pip.py

该命令会启动pip的安装程序,并自动下载和安装pip。

 如图所示 我下载的路径是C:\Users\wps\Downloads


4. 验证pip是否安装成功在完成pip的安装后,我们可以通过以下命令来验证pip是否已经成功安装:

        pip --version

该命令会输出当前安装的pip版本号,以及pip的其他信息。如果能够正常输出信息,则说明pip已经成功安装。
 

YOLOv5(You Only Look Once version 5)是一个流行的开源目标检测算法,基于PyTorch库实现,用于实时和高效地定位图像中的物体。以下是一个简单的YOLov5安装保姆教程: **步骤1:环境准备** - 安装Python:确保已安装Python 3.6或更高版本。 - 安装依赖:使用pip安装必要的库,如torch, torchvision, fastai等。运行以下命令: ``` pip install torch torchvision fastai ``` **步骤2:安装YOLov5** - 访问YOLov5的GitHub仓库:https://github.com/ultralytics/yolov5 - 在命令行中,导航到你想下载代码的目录并克隆仓库: ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` - 初始化项目并安装所需的额外依赖(如CUDA和CUDNN): ``` git submodule update --init --recursive pip install -r requirements.txt ``` **步骤3:设置CUDA(如果有GPU)** - 如果你的系统有NVIDIA GPU,需要安装CUDA和cuDNN。请根据你的系统文档进行配置。 - 确保在环境变量中添加了CUDA和cuDNN的路径。 **步骤4:开始训练或使用预训练模型** - 对于训练,执行`python train.py`,按照提示选择数据集、模型配置等选项。 - 对于预测,你可以使用`python detect.py`,提供一张图片或一个视频作为输入。 **注意事项:** - YOLOv5支持多种预训练权重,可以根据需求选择合适的模型(例如 yolov5s, yolov5m, yolov5l 或 yolov5x)。 - 根据你的硬件配置,训练过程可能需要一定时间,尤其是对于大型数据集和复杂模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值