1、内容概述
Spark内核调度的任务:
-
如何构建DAG执行流程图
-
如何划分Stage阶段
-
Driver底层是如何运转
-
确定需要构建多少分区(线程)
Spark内核调度的目的:尽可能用最少的资源高效地完成任务计算
2、RDD的依赖
RDD依赖:一个RDD的形成可能是由一个或者多个RDD得到的,此时这个RDD和之前的RDD之间产生依赖关系。
在Spark中,RDD之间的依赖关系,主要有二种类型:
-
窄依赖:
作用: 能够让Spark程序并行计算。也就是一个分区数据计算出现问题以后,其他的分区计算不受到任何影响 特点: 父RDD的分区和子RDD的分区关系是一对一的关系。也就是父RDD分区的数据会整个被下游子RDD的分区接收
-
宽依赖:
作用: 划分Stage的重要依据。宽依赖也叫做Shuffle依赖 特点: 父RDD的分区和子RDD的分区关系是一对多的关系。也就是父RDD的分区数据会被分成多份给到下游子RDD的多个分区所接收。 注意: 如果有宽依赖,shuffle下游的其他操作,必须等待shuffle执行完成以后才能够继续执行。为了避免数据不完整
说明:
在实际使用中,不需要纠结哪些算子会存在shuffle,以需求为目标。虽然shuffle的存在会影响一定的效率, 但是以完成任务为准则,该用那个算子,就使用那个算子即可,不要过分纠结。
算子中一般以ByKey结尾的会发生shuffle;另外是重分区算子会发生shuffle
3、DAG和Stage
DAG:有向无环图,主要描述一段执行任务,从开始一直往下走,不允许出现回调操作
Spark应用程序中,遇到一个Action算子,就会触发形成一个Job任务的产生。
对于每一个Job的任务,都会产生一个DAG执行流程图,那么这个流程图是如何形成的呢?
层级关系: 1- 一个application应用程序 -> 遇到一个Action算子,就会触发形成一个Job任务 2- 一个Job任务只有一个DAG有向无环图 3- 一个DAG有向无环图 -> 有多个Stage 4- 一个Stage -> 有多个Task线程 5- 一个RDD -> 有多个分区 6- 一个分区会被一个Task线程所处理
DAG执行流程图形成和Stage划分:
1- Spark应用程序遇到Action算子后,就会触发一个Job任务的产生。Job任务会将它所依赖的所有算子全部加载进来,形成一个Stage 2- 接着从Action算子从后往前进行回溯,遇到窄依赖就将算子放在同一个Stage当中;如果遇到宽依赖,就划分形成新的Stage。最后一直回溯完成
细化剖析Stage内部的流程:
默认并行度的值确认:
因为是使用textFile读取HDFS上的文件,因此RDD分区数=max(文件的block块的数量, defaultMinPartition)。继续需要知道defaultMinPartition的值是多少。 defaultMinPartition=min(spark.default.parallelism,2)取最小值。最终我们确认spark.default.parallelism的参数值就能够最终确认RDD的分区数有多少个 spark.default.parallelism参数值确认过程如下: 1- 如果有父RDD,就取父RDD的最大分区数 2- 如果没有父RDD,根据集群模式进行取值: 2.1- 本地模式:机器的最大CPU核数 2.2- (了解)Mesos:默认是8 2.3- 其他模式:所有执行节点上的核总数或2,以较大者为准
4、Spark Shuffle
Spark中shuffle的发展历程:
1- 在1.1版本以前,Spark采用Hash shuffle (优化前 和 优化后) 2- 在1.1版本的时候,Spark推出了Sort Shuffle 3- 在1.5版本的时候,Spark引入钨丝计划(优化为主) 4- 在1.6版本的时候,将钨丝计划合并到sortShuffle中 5- 在2.0版本的时候,将Hash Shuffle移除,将Hash shuffle方案移植到Sort Shuffle
未优化的Hash shuffle:
存在的问题: 上游(map端)的每个Task会产生与下游Task个数相等的小文件个数。这种情况会导致上游有非常多的小文件。另外,下游(reduce端)来拉取文件的时候,会有大量的网络IO和磁盘IO过程,因为要打开和读取多个小文件。
经过优化后的Hash shuffle
变成了由每个Executor进程产生与下游Task个数相等的小文件数。这样可以大量减小小文件的产生,以及降低下游拉取文件时候的网络IO和磁盘IO过程
Sort shuffle:
Sort Shuffle分成了两种: 普通机制和bypass机制。具体使用哪种,由Spark底层决定。 普通机制的运行过程: 每个上游Task线程处理数据,数据处理完以后,先放在内存中。接着对内存中的数据进行分区、排序。将内存中的数据溢写到磁盘,形成一个个的小文件。溢写完成以后,会将多个小文件合并成一个大的磁盘文件。并且针对每个大的磁盘文件,会提供一个索引文件。接着是下游Task根据索引文件来读取相应的数据。 bypass机制: 就是在普通机制的基础上,省略了排序的过程 bypass机制的触发条件是: 1- 上游RDD的分区数量最多不能超过200个 2- 上游不能对数据进行提前聚合操作(因为提前聚合,需要先进行分组操作,而分组的操作实际上是有排序的操作)
5、Job调度流程
主要是讨论:在Driver内部,是如何调度任务
1- Driver进程启动后,底层PY4J创建SparkContext顶级对象。在创建该对象的过程中,还会创建另外两个对象,分别是: DAGScheduler和TaskScheduler DAGScheduler: DAG调度器。将Job任务形成DAG有向无环图和划分Stage的阶段 TaskScheduler: Task调度器。将Task线程分配给到具体的Executor执行 2- 一个Spark程序遇到一个Action算子就会触发产生一个Job任务。SparkContext将Job任务给到DAG调度器,拿到Job任务后,会将Job任务形成DAG有向无环图和划分Stage的阶段。并且会确定每个Stage阶段有多少个Task线程,会将众多的Task线程放到TaskSet的集合中。DAG调度器将TaskSet集合给到Task调度器 3- Task调度器拿到TaskSet集合以后,将Task分配给到给到具体的Executor执行。底层是基于SchedulerBackend调度队列来实现的。 4- Executor开始执行任务。并且Driver会监控各个Executor的执行状态,直到所有的Executor执行完成,就认为任务运行结束 5- 后续过程和之前一样
6、Spark RDD并行度
整个Spark应用中,影响并行度的因素有以下两个原因:
-
1- 资源的并行度: Executor数量 和 CPU核心数 以及 内存的大小
-
2- 数据的并行度: Task的线程数 和 分区数量
一般将Task线程数设置为CPU核数的2-3倍。另外每个线程分配3-5GB的内存资源。
如何设置并行度:
语法: SparkConf().set("spark.default.parallelism", "num") 说明: spark.default.parallelism该参数是SparkCore中的参数。该参数只会影响shuffle以后的分区数量。另外该参数对parallelize并行化本地集合创建的RDD不起作用。
代码演示:
# 导包
from pyspark import SparkContext, SparkConf
import os
# 绑定指定的python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
if __name__ == '__main__':
# 6.1 TODO: 设置并行度
conf = SparkConf().set('spark.default.parallelism', '6')
# - 1.创建SparkContext对象
sc = SparkContext(conf=conf)
# - 2.数据输入
textRDD = sc.textFile('file:///export/data/spark_project/spark_base/content.txt')
# - 3.数据处理
# - 3.1文本内容切分
flatMapRDD = textRDD.flatMap(lambda line: line.split(" "))
# - 3.2数据格式转换
mapRDD = flatMapRDD.map(lambda word: (word, 1))
# 6.2 TODO: shuffle之前查看分区数量
print(f"shullfe之前分区数: {mapRDD.getNumPartitions()},分区内容:{mapRDD.glom().collect()}")
# - 3.3分组和聚合
reduceRDD = mapRDD.reduceByKey(lambda agg, curr: agg + curr)
# 6.3 TODO: shuffle之后查看分区数量
print(f"shullfe之后分区数: {reduceRDD.getNumPartitions()},分区内容:{reduceRDD.glom().collect()}")
# - 4.数据输出
# print(reduceRDD.collect())
# - 5.释放资源
sc.stop()