机器视觉方向

文章探讨了基于深度学习的缺陷检测方法,包括使用CNN和GAN进行特征提取和定位,以及利用注意力机制和自编码器优化。还讨论了无监督和半监督学习策略,以及多任务和元学习技术来提升模型性能。此外,提到了针对小样本问题的解决方案,如非监督学习和正样本训练方法。文章还比较了U-Net和MaskR-CNN在缺陷分割中的差异,并介绍了YOLO和FasterR-CNN在目标检测上的应用。
摘要由CSDN通过智能技术生成

注意力机制是现在的一个研究热点(也是识别准确率的一个涨分点)


原文链接

标记分布学习


标记分布学习作为一种新的学习范式,比多标记学习具有更丰富的标记语义,可以更精确地刻画与同一示例相关的多个标记的相对重要性差异等,是当今机器学习领域的研究热点之一。

基于深度学习的缺陷检测方法是近年来的研究热点之一,有很多不同的方向和技术123

例如,有些方法使用卷积神经网络(CNN)或生成对抗网络(GAN)来提取缺陷特征,并结合注意力机制或自编码器来定位缺陷区域1。有些方法使用无监督或半监督的学习方式,利用正常样本或少量异常样本来训练模型,并通过重构误差或异常分数来判断是否存在缺陷2。还有些方法使用多任务学习或元学习等技术,来提高模型的泛化能力和迁移能力,以适应不同类型和场景的缺陷检测3

2讨论了如何解决工业缺陷检测小样本问题,提出了两种算法路线:一种是完全不需要缺陷样本的非监督学习算法,另一种是基于有监督算法,对缺陷样本进行数据增强或生成。

与要做的相似


第一个


Automatic Metallic Surface Defect Detection and Recognition with Convolutional Neural Networks


检测对象:金属表面缺陷检测主要思想:本文讨论了用一种能准确定位和分类从实际工业环境中获取的输入图像中出现的缺陷的双重过程来自动检测金属缺陷。设计了一种新的级联自动编码器(CASAE)结构,用于缺陷的分割和定位。级联网络将输入的缺陷图像转化为基于语义分割的像素级预测掩模。利用压缩卷积神经网络(CNN)将分割结果的缺陷区域划分为特定的类。利用工业数据集可以成功地检测出各种条件下的金属缺陷。实验结果表明,该方法满足金属缺陷检测的稳健性和准确性要求。同时,它也可以扩展到其他检测应用中。其实还是使用语义分割网络先定位像素级别的缺陷位置,然后通过分类网络对缺陷进行识别。

文章描述:Automatic Metallic Surface Defect Detection and Recognition with Convolutional NeuralNetworks-论文阅读笔记_Dream_WLB的博客-CSDN博客

第二个


A Surface Defect Detection Method Based on Positive Samples


检测对象:密集织物主要思想:本文提出了一种新的基于正样本训练的缺陷检测框架。基本检测的概念是建立一个重建网络,它可以修复样本中存在的缺陷区域,然后对输入样本与恢复样本进行比较,以指示缺陷区域的准确。结合GAN和自动编码器进行缺陷图像重建,利用LBP进行图像局部对比度检测缺陷。在算法的训练过程中,只需要正样本,不需要缺陷样本和人工标注。主要结构:

主流缺陷检测模型


传统的机器视觉方法主要依赖于图像处理技术,如阈值分割、边缘检测、形态学操作等,来提取图像中的缺陷特征,并进行分类或定位。这些方法通常需要人为设定一些参数和阈值,对于复杂和多样的缺陷场景不太适用。

基于深度学习的方法主要利用神经网络模型,如卷积神经网络(CNN)、生成对抗网络(GAN)、自编码器(AE)等,来自动学习图像中的缺陷特征,并进行分类或定位。这些方法通常不需要人为设定参数和阈值,对于复杂和多样的缺陷场景更具有泛化能力。

目前,主流的基于深度学习的缺陷检测模型有以下几种:

  • Faster R-CNN:这是一种基于区域建议网络(RPN)和CNN的目标检测模型,可以快速地在图像中生成候选区域,并对每个区域进行分类和回归。

  • YOLO:这是一种将目标检测问题转化为回归问题的模型,可以直接在整个图像上预测目标类别和位置。

  • SSD:这是一种在单个CNN中同时预测目标类别和位置的模型,可以实现高效且准确地目标检测。

  • Mask R-CNN:这是一种在Faster R-CNN基础上增加了一个分割分支的模型,可以同时输出目标类别、位置和掩膜。

  • U-Net:这是一种具有编码器-解码器结构的全卷积神经网络(FCN),可以实现高精度且快速地图像分割。

  • AnoGAN:这是一种利用GAN生成正常样本并与异常样本进行比较的无监督异常检测模型。

  • AE:这是一种利用AE重构正常样本并计算与异常样本之间的重构误差的无监督异常检测模型。

U-Net和Mask R-CNN都是基于深度学习的缺陷分割模型,它们有以下几点不同:

  • U-Net是一种全卷积神经网络(FCN),它可以对整个图像进行像素级别的分割,而Mask R-CNN是一种目标检测模型,它只对图像中的感兴趣区域(RoI)进行分割。12

  • U-Net有一个编码器-解码器的结构,它可以通过跳跃连接(skip connection)将低层次和高层次的特征融合起来,从而实现多尺度的预测和深度监督。3 Mask R-CNN在Faster R-CNN的基础上增加了一个分割分支,它可以同时输出目标的类别、位置和掩膜。4

  • U-Net通常需要更少的参数和计算量,而Mask R-CNN通常需要更多的参数和计算量。2

  • U-Net通常更适合做结构比较简单、数据集较小、目标边界清晰的缺陷分割,如细胞分割、医学图像分割等。2 Mask R-CNN通常更适合做结构比较复杂、数据集较大、目标重叠或遮挡严重的缺陷分割,如工业表面缺陷分割、人体姿态识别等。4

YOLO模型是一种用于目标检测的深度学习模型,它的特点是速度快、准确率高、能够同时检测多个目标。YOLO模型的全称是You Only Look Once,意思是只需要看一次图像就可以完成目标检测,而不需要像其他模型那样先生成候选框再进行分类和定位。12

YOLO模型的基本思想是将输入图像划分为网格(grid),每个网格负责预测一个或多个边界框(bounding box)和对应的类别概率。YOLO模型由一个卷积神经网络(CNN)和一个全连接层(FC)组成,CNN用于提取图像特征,FC用于输出预测值。13

YOLO模型有多个版本,从v1到v5,每个版本都在前一个版本的基础上进行了改进和优化。例如,v2增加了批归一化(batch normalization)、锚框(anchor box)和多尺度训练等技术;v3引入了残差网络(ResNet)、特征金字塔网络(FPN)和逻辑回归分类器等技术;v4使用了更强大的骨干网络(backbone)如CSPDarknet53、SPP结构、PANet结构等技术;v5则进一步提升了速度、精度和稳定性,并且支持自动调参、数据增强等技术。456

Faster R-CNN模型是一种用于目标检测的深度学习模型,它的特点是在Fast R-CNN的基础上,使用了一个区域生成网络(Region Proposal Network,简称RPN)来代替选择性搜索方法,从而提高了速度和准确率。12

Faster R-CNN模型的基本结构是:首先使用一个卷积神经网络(CNN)提取图像的特征图,然后使用RPN网络在特征图上生成一系列的候选框,并给每个候选框打上前景或背景的标签。接着使用RoI池化层将不同大小的候选框转换为固定大小的特征向量,最后使用全连接层和softmax层进行目标分类和边界框回归。34

Faster R-CNN模型可以使用不同深度的CNN作为骨干网络,例如ZF-net、VGG-net、ResNet等。Faster R-CNN模型是RCNN系列算法中最经典和最高效的一个版本,它实现了端到端训练,并且在多个数据集上取得了优异的性能。256

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值