算法 拓扑序列

拓扑序列

定义

是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。 且该序列必须满足下面两个条件: 每个顶点出现且只出现一次。 若存在一条从顶点A 到顶点B 的路径,那么在序列中顶点A 出现在顶点B 的前面。

并不是所有的图都存在拓扑序。有向无环图一定存在拓扑序,有向无环图又被称为拓扑图。

基本概念

入度

一个点有多少条边指向自己

出度

由该点出发的有几条边

应用范围

有向无环图

作用

判断该图中有无环。

形成

只要有一个环,就无法形成拓扑序,因为环上每个点的入度都不为0。

有向无环图一定存在一个拓扑序,有向无环图也被称为拓扑图。

一个有向无环图,一定至少存在一个入度为0的点。

如何求拓扑序

构造算法思路

因为进行一个排序,保证满足拓扑定义。而有向无环图中是一定有一个或多个点入度为0的,这些点只可能在拓朴排序前面,所以以他们中的一个为起点进行排序。

以某点为起始点的边的另一个节点,在序列中只可能在该边起始点后面,由于边与边之间可能会链接,所以为保证拓扑序列的正确性,每次将入度为0的点作为基点进行相关边的探查,当存在边所关联的另一点只有这一条边的时候,该点应该为拓扑序列的下一批点中的一个【上一批可能有多个点度为零】。所以进行拓扑序列的构造应该进行以下操作。

将所有入度为0的点入队列,当队列非空时,每次取出队列头元素top,依次遍历所有以top为起始点的有向边。将对应边的另一点入度减一【表示去掉以t为起始点的这条边】,将这些点中入度为0的点输出并加入队列。此时这些点已然在拓扑序列之中。之后做同样的操作。

所有入度为0的点【没有任何一条边指向该点】都可以作为起点,都可以排在当前最前面的位置。

出队的顺序是拓扑序,拓扑序可能不唯一。

实现

其实就是使用BFS

在使用邻接链表存储边时,记录结束节点的入度。之后将入度为0的入队,然后进行bfs。

每次记录队头后出队,以队头为起点的边的终点的入度减1,看能不能为0,为零入队。以此类推

queue <——所有入度为0的点 将所有入度为0的点入队

//宽搜

while(queue 不空){

t<—每一次取队头

枚举t的所有出边t—>j

删掉t—>j,d[j]--(j的入度减1)

if(d[j]==0){

queue <——j 将j入队

}

}

若存在环,环上所有点的入度都不为0,环上所有点都无法入队。

//主函数
//主函数输入所有边时要更新入度
for (int i = 0;i < m;i++) {
		int a, b;
		cin >> a >> b;
		add(a, b);
		d[b]++;//更新入度
	}
//拓扑序函数
bool topsort() {
	int hh = 0, tt = -1;
	for (int i = 1;i <= n;i++) {//将所有入度为0的点入队
		if (!d[i])
			q[++tt] = i;
	}
	while (hh <= tt) {
		int t = q[hh++];//取队头
		for (int i = h[t];i != -1;i = ne[i]) {//拓展队头
			int j = e[i];
			d[j]--;
			if (d[j] == 0) 
				q[++tt] = j;
		}
	}
	return tt == n - 1;//判断是否所有点都进入过队列,如果tt==n-1,说明n个点全部进入过队列
}
//出队的顺序是拓扑序,答案可能不一致

例题——有向图的拓扑序

给定一个n个点m条边的有向图,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出-1。

若一个由图中所有点构成的序列A满足:对于图中的每条边(x, y),x在A中都出现在y之前,则称A是该图的一个拓扑序列。

输入格式
第一行包含两个整数n和m

接下来m行,每行包含两个整数x和y,表示存在一条从点x到点y的有向边(x, y)。

输出格式
共一行,如果存在拓扑序列,则输出拓扑序列。

否则输出-1

数据范围

1≤n,m≤10^5

输入样例

3 3

1 2

2 3

1 3

输出样例

1 2 3

代码

#include<iostream>
#include<cstring>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int q[N], d[N];//q是队列,d是入度
void add(int a, int b) {
	e[idx] = b;
	ne[idx] = h[a];
	h[a] = idx++;
}
bool topsort() {
	int hh = 0, tt = -1;
	for (int i = 1;i <= n;i++) {
		if (!d[i])
			q[++tt] = i;
	}
	while (hh <= tt) {
		int t = q[hh++];
		for (int i = h[t];i != -1;i = ne[i]) {
			int j = e[i];
			d[j]--;
			if (d[j] == 0) 
				q[++tt] = j;
		}
	}
	return tt == n - 1;//判断是否所有点都进入过队列,如果tt==n-1,说明n个点全部进入过队列
}
int main() {
	cin >> n >> m;
	memset(h, -1, sizeof h);
	for (int i = 0;i < m;i++) {
		int a, b;
		cin >> a >> b;
		add(a, b);
		d[b]++;//更新入度
	}
	if (topsort()) {
		for (int i = 0;i < n;i++)
			printf("%d ", q[i]);
		puts("");
	}
	else puts("-1");
}
  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
算法是解决特定问题或执行特定任务的一系列步骤或规则的有序集合。在计算机科学中,算法通常用来指导计算机执行特定的任务或解决问题。良好设计的算法能够有效地解决问题,并且在给定的输入下能够产生正确的输出。 常见的算法包括但不限于以下几种: 排序算法:排序算法是将一组数据按照一定的顺序排列的算法。常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。 搜索算法:搜索算法用于在数据集中查找特定元素的算法。常见的搜索算法包括线性搜索、二分搜索等。 图算法:图算法用于处理图结构的数据,如最短路径算法(如Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(如Prim算法、Kruskal算法)等。 动态规划:动态规划是一种通过将问题分解成更小的子问题来解决复杂问题的算法。常见的动态规划问题包括背包问题、最长递增子序列、编辑距离等。 贪心算法:贪心算法是一种在每一步选择中都采取当前状态下最优决策的算法。常见的贪心算法包括最小生成树算法中的Prim算法、Dijkstra算法等。 字符串匹配算法:字符串匹配算法用于在一个字符串(文本)中查找一个子串(模式)的出现位置。常见的字符串匹配算法包括暴力匹配、KMP算法、Boyer-Moore算法等。 这些是计算机科学中常见的算法类型,每种算法都有不同的应用场景和解决问题的方法。在实际编程中,选择合适的算法对于提高程序效率和性能至关重要。
对于带权图,不能直接使用拓扑排序算法求出拓扑序列。需要进行一些修改。 首先,我们需要定义一个数组 $dist$,表示从起点到该点的最长路径长度。初始时,$dist[i]$ 的值应为 $-\infty$,表示还没有遍历到该点。 然后,我们对图进行拓扑排序。在每个点 $u$ 被遍历到时,更新其所有出边指向的点 $v$ 的 $dist$ 值,即 $dist[v] = \max(dist[v], dist[u] + w(u, v))$,其中 $w(u, v)$ 表示边 $(u, v)$ 的权值。 最后,按照拓扑排序的结果,按照 $dist$ 值从大到小进行排序即可得到带权图的拓扑序列。 代码实现如下: ```python from collections import deque def topological_sort(graph, indegree): n = len(graph) queue = deque() for i in range(n): if indegree[i] == 0: queue.append(i) order = [] while queue: u = queue.popleft() order.append(u) for v in graph[u]: indegree[v] -= 1 if indegree[v] == 0: queue.append(v) return order def weighted_topological_sort(graph, indegree, weights): n = len(graph) dist = [-float('inf')] * n dist[0] = 0 order = topological_sort(graph, indegree) order.sort(key=lambda u: -dist[u]) for u in order: for v, w in graph[u]: dist[v] = max(dist[v], dist[u] + weights[(u, v)]) return order ``` 其中,$graph$ 表示图的邻接表,$indegree$ 表示每个点的入度,$weights$ 是一个字典,表示每条边的权值。函数 $topological\_sort$ 是普通的拓扑排序算法,$weighted\_topological\_sort$ 则是带权图的拓扑排序算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

何hyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值