BUUCTF-MISC-[XMAN2018排位赛]ppap(详细解析)

目录

题目链接:

题目解析:

获取flag:


题目链接:

https://buuoj.cn/challenges#[XMAN2018%E6%8E%92%E4%BD%8D%E8%B5%9B]ppap

题目解析:

首先搜索一下,发现tcp contains flag搜索到了追踪流看一下信息

 发现是经过base加密的,复制进Notepad++中 将上图中标记位置”/”处前面删除,然后全选进行base解密,解密出来发现是开头是FF D8 FF E0大概率是一个jpg文件,另存为.jpg文件

 打开123.jpg,发现一个普通图片居然6MB里面肯定包含其他文件

 使用foremost将123.jpg分离出来,Cmd  进入foremost.exe文件夹导出

(123.jpg文件需要和foremost.exe在同一文件夹下

(*windows版foremost个人主页有下载资源)

 查看binary文件夹中output文件夹,分离出来一个jpg 和一个压缩包

 压缩包有密码(*可以暴力破解密码 不推荐) 但是jpg获取不到什么信息

 回到Notepad++中仔细分析,发现最下面有一串代码,看起来很像html、xml格式。Ctrl+F查找一下ml发现是xml文件,将代码段复制进行格式化,方便分析(*在线xml格式化,最后一行不要选)

 将格式化后的代码保存123.xml,在123.xml路径下写一个人脸识别Python脚本

(*123.xml,Python脚本,分离出来的jpg文件夹需要在同一路径下)

//python脚本
import os
import sys
import cv2 // cv2模块需要自行安装
# Get all of the pictures
imgs = os.listdir('jpg') // 'jpg'为分离出来的图片文件夹
# Cascade we'll be using for detection
cascade = cv2.CascadeClassifier('123.xml') // '123.xml'保存的123.xml文件
# From the clues
scaling_factor = 1.02
min_neighbors = 65  # Bumped this up until one pic was left
for img_name in imgs:
    # Load the image and run the cascade
    img = cv2.imread(os.path.join('jpg', img_name)) // 'jpg'为分离出来的图片文件夹
    # print img
    detect = cascade.detectMultiScale(img, scaling_factor, min_neighbors)
    if len(detect) > 0:
        print('ok')
        for (x, y, w, h) in detect:
            # X marks the spot!
            cv2.line(img, (x, y),     (x + w, y + h), (255, 0, 0), 2)
            cv2.line(img, (x, y + h), (x + w, y),     (255, 0, 0), 2)
        # Save the new image
        cv2.imwrite(os.path.join('123', img_name), img) // '123'为新建的空文件夹
函数介绍:

参数1:image--待检测图片,一般为灰度图像加快检测速度;

参数2:objects--被检测物体的矩形框向量组;
参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。
        默认为1.1即每次搜索窗口依次扩大10%;
参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。
        如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。
        如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,
        这种设定值一般用在用户自定义对检测结果的组合程序上;
参数5:flags--要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为
        CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域
        因此这些区域通常不会是人脸所在区域;
参数6、7:minSize和maxSize用来限制得到的目标区域的范围。

进入cmd  安装CV2,不安装会报错

​pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

 运行Python脚本,打开新建文件夹123,发现多了一张图片

 

获取flag:

发现图片是一个海盗,思考海盗和密码会有什么联系,海盗帽子上面的骷髅而且还有十字骨 英文是skull and cross bones去掉空格发现可以解开压缩包密码,获取到flag

flag{b31Ng_4_P1r4tE_1s_4lR1GHT_w1Th_M3}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柠.筱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值