BUUCTF-MISC-[XMAN2018排位赛]ppap(详细解析)

目录

题目链接:

题目解析:

获取flag:


题目链接:

https://buuoj.cn/challenges#[XMAN2018%E6%8E%92%E4%BD%8D%E8%B5%9B]ppap

题目解析:

首先搜索一下,发现tcp contains flag搜索到了追踪流看一下信息

 发现是经过base加密的,复制进Notepad++中 将上图中标记位置”/”处前面删除,然后全选进行base解密,解密出来发现是开头是FF D8 FF E0大概率是一个jpg文件,另存为.jpg文件

 打开123.jpg,发现一个普通图片居然6MB里面肯定包含其他文件

 使用foremost将123.jpg分离出来,Cmd  进入foremost.exe文件夹导出

(123.jpg文件需要和foremost.exe在同一文件夹下

(*windows版foremost个人主页有下载资源)

 查看binary文件夹中output文件夹,分离出来一个jpg 和一个压缩包

 压缩包有密码(*可以暴力破解密码 不推荐) 但是jpg获取不到什么信息

 回到Notepad++中仔细分析,发现最下面有一串代码,看起来很像html、xml格式。Ctrl+F查找一下ml发现是xml文件,将代码段复制进行格式化,方便分析(*在线xml格式化,最后一行不要选)

 将格式化后的代码保存123.xml,在123.xml路径下写一个人脸识别Python脚本

(*123.xml,Python脚本,分离出来的jpg文件夹需要在同一路径下)

//python脚本
import os
import sys
import cv2 // cv2模块需要自行安装
# Get all of the pictures
imgs = os.listdir('jpg') // 'jpg'为分离出来的图片文件夹
# Cascade we'll be using for detection
cascade = cv2.CascadeClassifier('123.xml') // '123.xml'保存的123.xml文件
# From the clues
scaling_factor = 1.02
min_neighbors = 65  # Bumped this up until one pic was left
for img_name in imgs:
    # Load the image and run the cascade
    img = cv2.imread(os.path.join('jpg', img_name)) // 'jpg'为分离出来的图片文件夹
    # print img
    detect = cascade.detectMultiScale(img, scaling_factor, min_neighbors)
    if len(detect) > 0:
        print('ok')
        for (x, y, w, h) in detect:
            # X marks the spot!
            cv2.line(img, (x, y),     (x + w, y + h), (255, 0, 0), 2)
            cv2.line(img, (x, y + h), (x + w, y),     (255, 0, 0), 2)
        # Save the new image
        cv2.imwrite(os.path.join('123', img_name), img) // '123'为新建的空文件夹
函数介绍:

参数1:image--待检测图片,一般为灰度图像加快检测速度;

参数2:objects--被检测物体的矩形框向量组;
参数3:scaleFactor--表示在前后两次相继的扫描中,搜索窗口的比例系数。
        默认为1.1即每次搜索窗口依次扩大10%;
参数4:minNeighbors--表示构成检测目标的相邻矩形的最小个数(默认为3个)。
        如果组成检测目标的小矩形的个数和小于 min_neighbors - 1 都会被排除。
        如果min_neighbors 为 0, 则函数不做任何操作就返回所有的被检候选矩形框,
        这种设定值一般用在用户自定义对检测结果的组合程序上;
参数5:flags--要么使用默认值,要么使用CV_HAAR_DO_CANNY_PRUNING,如果设置为
        CV_HAAR_DO_CANNY_PRUNING,那么函数将会使用Canny边缘检测来排除边缘过多或过少的区域
        因此这些区域通常不会是人脸所在区域;
参数6、7:minSize和maxSize用来限制得到的目标区域的范围。

进入cmd  安装CV2,不安装会报错

​pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

 运行Python脚本,打开新建文件夹123,发现多了一张图片

 

获取flag:

发现图片是一个海盗,思考海盗和密码会有什么联系,海盗帽子上面的骷髅而且还有十字骨 英文是skull and cross bones去掉空格发现可以解开压缩包密码,获取到flag

flag{b31Ng_4_P1r4tE_1s_4lR1GHT_w1Th_M3}

 

### BUUCTF Snake 题目分析 在BUUCTFmisc类别中,涉及snake主题的题目通常会结合密码学基础、隐写术以及一些常见的编码技巧。以下是基于已知引用内容和专业知识对该类题目的解答方法。 #### 1. 密钥推导 根据已有信息,“anaconda”被提及作为某个cipher的密钥[^1]。这表明,在解决此类问题时,需要关注歌曲名称或其他线索中的关键词是否可以转化为加密算法所需的密钥。例如,如果题目提供了音频文件或者提示了某种动物(如蛇),则应尝试将其映射到可能的字符串形式,并测试其作用于常见加密技术的效果。 #### 2. 工具应用 对于涉及到图像或压缩包隐藏信息的情况,《BUUCTF misc 解题记录》提到使用`outguess`工具较少见但有效[^2]。此软件主要用于提取嵌入图片内的秘密消息;因此当面对`.jpg`, `.png`等形式的数据载体时可考虑运用该程序来查找潜在payloads。 #### 3. Python脚本实现逆向操作 从另一篇wp文档得知存在一段python代码用于计算flag值[^3]: ```python import binascii m = [0x410A4335494A0942, 0x0B0EF2F50BE619F0, 0x4F0A3A064A35282B] enc = "********CENSORED********" flag = b"" for i in range(3): p = enc[i*8:(i+1)*8] # 取每组8字节长度的部分 a = binascii.b2a_hex(p[::-1].encode('utf-8')) # 转换为十六进制表示后再反转顺序 temp_sum = int(a, base=16) + m[i] # 加上对应的偏移量M_i result_bytes = hex(temp_sum)[2:].rjust(len(a), '0').decode('hex')[::-1] # 处理最终结果恢复原始排列方向 flag += result_bytes print(flag.decode()) ``` 上述代码片段展示了如何通过给定参数列表`m[]`逐步还原出完整的FLAG串。它先按固定步长分割待解码序列,再逐一对各部分执行特定变换运算直至获得明文输出。 #### 4. 特殊字符处理 最后值得注意的是某些情况下特殊符号也可能成为干扰因素之一。“Nss shop”的例子说明即使看似简单的括号位置差异都可能导致完全不同的解析路径[^4]。所以在实际动手之前务必仔细阅读全部描述以免遗漏重要细节。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柠.筱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值