MapReduce核心编程思想

本文介绍了MapReduce模型,其将复杂的并行编程问题抽象为Map和Reduce函数,让开发者专注于业务逻辑,自动处理分布式存储、调度等技术细节。适用于可分解为小数据集且并行处理的数据集。
摘要由CSDN通过智能技术生成

相关概念

      1.MapReduce模型的核心是Map和Reduce函数,程序员只需要关注如何实现Map和Reduce函数,而不需要处理并行编程中其他各种复发问题,如分布式存储、工作调度、负载均衡、容错处理、网络通信等。

       2.适合用MapReduce来处理的数据集需要满足的一个前提条件:待处理的数据集可以分解成许多小的数据集,而且每一个小的数据集都可以完全并行的进行处理。

编程规范

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值