密码工程-扩展欧几里得算法

  1. 在openEuler(推荐)或Ubuntu或Windows(不推荐)中完成下面任务,要用git记录实现过程,git commit不能低于5次
  2. 严格按照《密码工程》p112伪代码实现ExtendedGCD(int a, int b, int *k, int *u, int *v)算法(10’)
    2.根据ExtendedGCD 实现计算模逆元的函数int modInverse(int a, int m) ,返回a相对于m的模逆元(3‘)
  3. 在测试代码中计算74模167的模逆元。自己再设计至少两个类似测试代码。(2’)
  4. 提交代码和运行结果截图,git log截图
  5. 提交使用Markdown并转为pdf格式,或者使用doc、docx格式

代码如下:

//myexgcd
#include<stdio.h>
int main()
{
    unsigned int a,b;
    int u,v,gcd;
    int extendedgcd(unsigned int a,unsigned int b,int *x,int *y);
    printf("请输入a和b:");
    scanf("%d%d",&a,&b);
    gcd=extendedgcd(a,b,&u,&v);
    printf("u=%d,v=%d\n",u,v);
    printf("最大公因子k=%d\n",gcd);
    printf("%d*%d+%d*%d=%d\n", u, a, v, b, gcd);
    return 0;
    }
    int extendedgcd(unsigned int a,unsigned int b,int *x,int *y)//扩展欧几里得算法;
    {
    if(b==0)
      {
        *x=1;
        *y=0;
        return a;
      }
    int ret=extendedgcd(b,a%b,x,y);
    int t=*x;
    *x=*y;
    *y=t-a/b*(*y);
    return ret;
}

类似算法

#include <stdio.h>

int extendedgcd(unsigned int a,unsigned int b,int *x,int *y) {
    if (a == 0) {
        *x = 0;
        *y = 1;
        return b;
    }
    int x1, y1;
    int gcd = extendedgcd(b % a, a, &x1, &y1);
    *x = y1 - (b / a) * x1;
    *y = x1;
    return gcd;
}

int modinv(int a, int m) {
    int x, y;
    int g = extendedgcd(a, m, &x, &y);
    if (g != 1) {
        return -1;
    }
    return (x % m + m) % m;
}

int main() {
    int num1, num2;

    printf("请输入两个整数,用空格分隔:");
    scanf("%d %d", &num1, &num2);

    int mod_inverse = modinv(num1, num2);
    if (mod_inverse == -1) {
        printf("%d 没有模逆元\n", num1);
    } else {
        printf("%d 模 %d 的模逆元为: %d\n", num1, num2, mod_inverse);
    }

    return 0;
}
#include <stdio.h>

int extendedgcd(unsigned int a,unsigned int b,int *x,int *y {
    if (a == 0) {
        *x = 0;
        *y = 1;
        return b;
    }
    int x1, y1;
    int gcd = extendedgcd(b % a, a, &x1, &y1);
    *x = y1 - (b / a) * x1;
    *y = x1;
    return gcd;
}

int modinv(int a, int m) {
    int x, y;
    int g = extendedgcd(a, m, &x, &y);
    if (g != 1) {
        return -1; // 没有模逆元
    }
    return (x % m + m) % m;
}

int main() {
    int num1, num2;
    
    do {
        printf("请输入两个整数 a 和 m(用空格分隔):");
        if (scanf("%d %d", &num1, &num2) != 2) {
            printf("输入错误,请重新输入\n");
            while (getchar() != '\n'); // 清空输入缓冲区
        } else {
            break;
        }
    } while (1);

    if (num2 <= 0) {
        printf("m 必须是正整数\n");
        return 1;
    }

    int mod_inverse = modinv(num1, num2);
    if (mod_inverse == -1) {
        printf("%d 在模 %d 下没有模逆元\n", num1, num2);
    } else {
        printf("%d 在模 %d 下的模逆元为: %d\n", num1, num2, mod_inverse);
    }

    return 0;
}

请添加图片描述
请添加图片描述
git log
请添加图片描述

第一次提交
请添加图片描述
第二次提交
请添加图片描述
第三次提交
请添加图片描述
第四次提交
请添加图片描述

第五次提交

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值