使用Mathematica绘制黑白色的Mandelbrot集合

Mandelbrot集合,是一个很典型的分形案例。前面我们已经介绍很多绘制方法。今天给出一个简单的编程,使用Mathematica。并且将之与Mathematica内置函数做对比。这里使用迭代次数(也就是逃逸世间法)简单编写函数

fun[c_, maxiter_Integer : 10^4] := Abs[
   NestWhile[
    #^2 + c &, 0, Abs[#] < 2 &, 1, maxiter
    ]
   ] < 2

使用ArrayPlot函数进行绘制:

ArrayPlot[
 Table[
 Boole[fun[N[x + I y], 10^4]],
  {y, -2, 2, 1/50}, {x, -2, 1.4, 1/50}
   ]
   ]

使用内置函数N[]的精度设置,可以做高精度计算:

ArrayPlot[
 Table[
  Boole[fun[N[x + I y], 200]],
  {y, 0.14, 0.15, 10^-5}, {x, -0.75, -0.74, 10^-5}
  ]
 ]

与之做对比,使用Mathematica内置绘制函数绘制,可以得到:

MandelbrotSetPlot[(-0.743030 + 0.126433 I) + {-1 - I, 
    1 + I}/(1.01^550), MaxIterations -> (100 + 5000), 
 ImageResolution -> 2000, ColorFunction -> "Rainbow"]

也可以改变颜色函数,得到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值