如何在 Elasticsearch 中选择精确 kNN 搜索和近似 kNN 搜索

在Elasticsearch中,选择精确kNN搜索和近似kNN搜索取决于你的具体需求和数据集的特点。以下是基于搜索结果的分析和建议,以及一些示例代码。

精确kNN搜索(Exact kNN)

精确kNN搜索,也称为暴力搜索(brute force search),会计算查询向量与索引中所有向量的相似度,然后返回最相似的k个结果。这种方法的优点是结果非常准确,但缺点是计算成本高,尤其是在大数据集上。

适用场景

  • 数据集较小(如少于一万个文档)[1]
  • 需要高精度结果

示例代码

GET /my-index/_search
{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilarity(queryVector, doc['my_vector'].value) + 1",
        "params": {
          "queryVector": [0.1, 0.2, 0.3]
        }
      }
    }
  }
}

在这个例子中,我们使用script_score查询来实现精确kNN搜索,其中cosineSimilarity是一个自定义的脚本函数,用于计算查询向量与文档向量之间的余弦相似度。

近似kNN搜索(Approximate kNN)

近似kNN搜索通过使用特定的算法(如HNSW)来减少计算量,从而加快搜索速度。这种方法牺牲了一定的准确性以换取效率,但在大规模数据集上通常更实用。

适用场景

  • 大规模数据集
  • 可以接受一定程度的近似结果
  • 对搜索速度有较高要求

示例代码

GET /my-index/_search
{
  "knn": {
    "field": "my_vector",
    "query_vector": [0.1, 0.2, 0.3],
    "k": 10,
    "num_candidates": 100
  }
}

在这个例子中,我们使用Elasticsearch的kNN搜索API,指定了字段my_vector,查询向量,以及我们想要返回的最邻近向量的数量k和候选向量的数量num_candidates

选择建议

  1. 文档数量:如果文档数量较少,可以考虑使用精确搜索。
  2. 搜索性能:如果性能是一个关键因素,或者数据集很大,近似搜索可能是更好的选择。
  3. 准确性需求:如果需要高度精确的结果,精确搜索是必要的。
  4. 过滤器使用:如果搜索中使用了过滤器,这将影响要搜索的文档数量,可能会使精确搜索变得可行。

结论

选择精确还是近似kNN搜索,需要根据你的具体需求和数据集的特点来决定。对于小规模数据集,精确搜索可以提供更准确的结果;而对于大规模数据集,近似搜索则在保持可接受准确性的同时提供更快的搜索速度。在实际应用中,可能还需要通过性能测试来确定最佳的搜索策略。[1]

✅作者简介:热爱科研的嵌入式开发者,修心和技术同步精进

❤欢迎关注我的知乎:对error视而不见

代码获取、问题探讨及文章转载可私信。

☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。

🍎获取更多嵌入式资料可点击链接进群领取,谢谢支持!👇

点击领取更多详细资料

在Spring Cloud Alibaba使用ElasticsearchKNN算法进行查询,需要进行以下步骤: 1. 首先需要在pom.xml文件添加elasticsearch-rest-high-level-client和elasticsearch-repository-spring-data依赖。 ``` <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-elasticsearch</artifactId> </dependency> <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-elasticsearch</artifactId> <version>4.0.3</version> </dependency> ``` 2. 创建一个POJO类,用于映射Elasticsearch的文档数据。 ``` @Data @Document(indexName = "knn_index", type = "knn_type") public class KnnEntity { @Id private String id; private String name; private float[] vector; } ``` 3. 创建一个Repository接口,继承自ElasticsearchRepository,用于对Elasticsearch进行操作。 ``` public interface KnnRepository extends ElasticsearchRepository<KnnEntity, String> { Page<KnnEntity> findByName(String name, Pageable pageable); Page<KnnEntity> findByVector(float[] vector, Pageable pageable); //查询距离指定向量最近的k个文档 @Query("{\"knn\":{\"vector\":{\"vector\":\"?0\",\"field\":\"vector\"},\"k\":?1}}") List<KnnEntity> findNearest(float[] vector, int k); } ``` 4. 在Spring Boot配置文件,设置KNN算法相关的配置。 ``` spring: elasticsearch: rest: uris: http://localhost:9200 connection-timeout: 1000ms socket-timeout: 30000ms max-conn-per-route: 10 max-conn-total: 30 username: elastic password: changeme repositories: enabled: true # KNN plugin settings knn: enabled: true space-type: l2 ``` 5. 在代码使用KNN算法进行查询。 ``` @Autowired private KnnRepository knnRepository; //根据名称查询 Page<KnnEntity> page = knnRepository.findByName("test", PageRequest.of(0, 10)); //查询距离指定向量最近的k个文档 float[] vector = {1.0f, 2.0f, 3.0f}; List<KnnEntity> list = knnRepository.findNearest(vector, 5); ``` 以上就是在Spring Cloud Alibaba使用ElasticsearchKNN算法进行查询的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_Guru人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值