Combat数据融合处理多中心脑影像数据

文章讲述了作者如何处理来自不同中心医院的小样本数据,通过DPABI预处理获取ReHo值和fALLF值,利用Combat方法结合年龄、性别等变量进行标准化,最终进行统计分析的过程,期待交流改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        因为自己收的一批数据来自不同中心医院,而且每家医院的样本量也比较小,于是我采用了combat的数据融合方法。

        处理过程是这样的:

1.先把各中心数据用DPABI进行预处理,再获得ReHo值、fALLF值。

2.生成所有被试的90%groupmasks

3.将每个被试ReHo、fALLFmap转换为矩阵,用reshape函数生成一列数值,再生成groupmasks范围内的矩阵,最后将得到特征值x被试数目的矩阵。去除为0的行。

4.将不同的被试所在的医院设为不同的batch,age、sex、头动、疾病类型设为mod,方法1经典贝叶斯、2非参数,进行combat处理

5.combat后获得到的矩阵补0,再转为nii文件。最后再放入DPABI进行统计分析。

如果有步骤不对的地方,欢迎大家交流指正。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值