A - September
Problem Statement
There are
12
12
12 strings
S
1
,
S
2
,
…
,
S
12
S_1, S_2, \ldots, S_{12}
S1,S2,…,S12 consisting of lowercase English letters.
Find how many integers
i
i
i
(
1
≤
i
≤
12
)
(1 \leq i \leq 12)
(1≤i≤12) satisfy that the length of
S
i
S_i
Si is
i
i
i.
Constraints
Each S i S_i Si is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters. ( 1 ≤ i ≤ 12 ) (1 \leq i \leq 12) (1≤i≤12)
Input
The input is given from Standard Input in the following format:
S
1
S_1
S1
S
2
S_2
S2
⋮
\vdots
⋮
S
12
S_{12}
S12
Output
Print the number of integers i i i ( 1 ≤ i ≤ 12 ) (1 \leq i \leq 12) (1≤i≤12) such that the length of S i S_i Si is i i i.
Sample Input 1
january
february
march
april
may
june
july
august
september
october
november
december
Sample Output 1
1
There is only one integer
i
i
i such that the length of
S
i
S_i
Si is
i
i
i:
9
9
9. Thus, print 1
.
Sample Input 2
ve
inrtfa
npccxva
djiq
lmbkktngaovl
mlfiv
fmbvcmuxuwggfq
qgmtwxmb
jii
ts
bfxrvs
eqvy
Sample Output 2
2
There are two integers
i
i
i such that the length of
S
i
S_i
Si is
i
i
i:
4
4
4 and
8
8
8. Thus, print 2
.
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int res = 0;
for (int i = 1; i <= 12; i ++) {
string s;
cin >> s;
if (s.size() == i) res ++;
}
cout << res << endl;
return 0;
}
B - 1D Keyboard
Problem Statement
There is a keyboard with
26
26
26 keys arranged on a number line.
The arrangement of this keyboard is represented by a string
S
S
S, which is a permutation of ABCDEFGHIJKLMNOPQRSTUVWXYZ
.
The key corresponding to the character
S
x
S_x
Sx is located at coordinate
x
x
x
(
1
≤
x
≤
26
)
(1 \leq x \leq 26)
(1≤x≤26). Here,
S
x
S_x
Sx denotes the
x
x
x-th character of
S
S
S.
You will use this keyboard to input ABCDEFGHIJKLMNOPQRSTUVWXYZ
in this order, typing each letter exactly once with your right index finger.
To input a character, you need to move your finger to the coordinate of the key corresponding to that character and press the key.
Initially, your finger is at the coordinate of the key corresponding to A
. Find the minimal possible total traveled distance of your finger from pressing the key for A
to pressing the key for Z
. Here, pressing a key does not contribute to the distance.
Constraints
S
S
S is a permutation of ABCDEFGHIJKLMNOPQRSTUVWXYZ
.
Input
The input is given from Standard Input in the following format:
S S S
Output
Print the answer.
Sample Input 1
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Sample Output 1
25
From pressing the key for A
to pressing the key for Z
, you need to move your finger
1
1
1 unit at a time in the positive direction, resulting in a total traveled distance of
25
25
25. It is impossible to press all keys with a total traveled distance less than
25
25
25, so print 25
.
Sample Input 2
MGJYIZDKSBHPVENFLQURTCWOAX
Sample Output 2
223
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int res = 0;
unordered_map<char, int> idx;
for (int i = 1; i <= 26; i ++) {
char x;
cin >> x, idx[x] = i;
}
for (char i = 'A' + 1; i <= 'Z'; i ++)
res += abs(idx[i] - idx[i - 1]);
cout << res << endl;
return 0;
}
C - Max Ai+Bj
Problem Statement
You are given two integer sequences A A A and B B B, each of length N N N. Choose integers i , j i, j i,j ( 1 ≤ i , j ≤ N ) (1 \leq i, j \leq N) (1≤i,j≤N) to maximize the value of A i + B j A_i + B_j Ai+Bj.
Constraints
1
≤
N
≤
5
×
1
0
5
1 \leq N \leq 5 \times 10^5
1≤N≤5×105
∣
A
i
∣
≤
1
0
9
|A_i| \leq 10^9
∣Ai∣≤109
(
i
=
1
,
2
,
…
,
N
)
(i=1,2,\dots,N)
(i=1,2,…,N)
∣
B
j
∣
≤
1
0
9
|B_j| \leq 10^9
∣Bj∣≤109
(
j
=
1
,
2
,
…
,
N
)
(j=1,2,\dots,N)
(j=1,2,…,N)
All input values are integers.
Input
The input is given from Standard Input in the following format:
N
N
N
A
1
A_1
A1
A
2
A_2
A2
…
\dots
…
A
N
A_N
AN
B
1
B_1
B1
B
2
B_2
B2
…
\dots
…
B
N
B_N
BN
Output
Print the maximum possible value of A i + B j A_i + B_j Ai+Bj.
Sample Input 1
2
-1 5
3 -7
Sample Output 1
8
For ( i , j ) = ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) (i,j) = (1,1), (1,2), (2,1), (2,2) (i,j)=(1,1),(1,2),(2,1),(2,2), the values of A i + B j A_i + B_j Ai+Bj are 2 , − 8 , 8 , − 2 2, -8, 8, -2 2,−8,8,−2 respectively, and ( i , j ) = ( 2 , 1 ) (i,j) = (2,1) (i,j)=(2,1) achieves the maximum value 8 8 8.
Sample Input 2
6
15 12 3 -13 -1 -19
7 17 -13 -10 18 4
Sample Output 2
33
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int n;
cin >> n;
int A = -1e18, B = -1e18;
for (int i = 1, x; i <= n; i ++) cin >> x, A = max(A, x);
for (int i = 1, x; i <= n; i ++) cin >> x, B = max(B, x);
cout << A + B << endl;
return 0;
}
D - Hidden Weights
Problem Statement
You are given a directed graph with
N
N
N vertices and
M
M
M edges. The
j
j
j-th directed edge goes from vertex
u
j
u_j
uj to vertex
v
j
v_j
vj and has a weight of
w
j
w_j
wj.
Find one way to write an integer between
−
1
0
18
-10^{18}
−1018 and
1
0
18
10^{18}
1018, inclusive, to each vertex such that the following condition is satisfied.
Let
x
i
x_i
xi be the value written on vertex
i
i
i. For all edges
j
=
1
,
2
,
…
,
M
j=1,2,\dots,M
j=1,2,…,M, it holds that
x
v
j
−
x
u
j
=
w
j
x_{v_j} - x_{u_j} = w_j
xvj−xuj=wj.
It is guaranteed that at least one such assignment exists for the given input.
Constraints
2
≤
N
≤
2
×
1
0
5
2 \leq N \leq 2 \times 10^5
2≤N≤2×105
1
≤
M
≤
min
{
2
×
1
0
5
,
N
(
N
−
1
)
/
2
}
1 \leq M \leq \min\{2 \times 10^5,N(N-1)/2\}
1≤M≤min{2×105,N(N−1)/2}
1
≤
u
j
,
v
j
≤
N
1 \leq u_j, v_j \leq N
1≤uj,vj≤N
u
j
≠
v
j
u_j \neq v_j
uj=vj
If
i
≠
j
i \neq j
i=j, then
(
u
i
,
v
i
)
≠
(
u
j
,
v
j
)
(u_i, v_i) \neq (u_j, v_j)
(ui,vi)=(uj,vj) and
(
u
i
,
v
i
)
≠
(
v
j
,
u
j
)
(u_i, v_i) \neq (v_j, u_j)
(ui,vi)=(vj,uj)
∣
w
j
∣
≤
1
0
9
|w_j| \leq 10^9
∣wj∣≤109
All input values are integers.
There exists at least one assignment satisfying the conditions.
Input
The input is given from Standard Input in the following format:
N
N
N
M
M
M
u
1
u_1
u1
v
1
v_1
v1
w
1
w_1
w1
u
2
u_2
u2
v
2
v_2
v2
w
2
w_2
w2
⋮
\vdots
⋮
u
M
u_M
uM
v
M
v_M
vM
w
M
w_M
wM
Output
Let x i x_i xi be the integer written on vertex i i i. Print x 1 , x 2 , … , x N x_1, x_2, \dots, x_N x1,x2,…,xN in this order, separated by spaces, on a single line. If there are multiple solutions, you may print any of them.
Sample Input 1
3 3
1 2 2
3 2 3
1 3 -1
Sample Output 1
3 5 2
By setting
x
=
(
3
,
5
,
2
)
x = (3, 5, 2)
x=(3,5,2), we have
x
2
−
x
1
=
w
1
=
2
x_2 - x_1 = w_1 = 2
x2−x1=w1=2,
x
2
−
x
3
=
w
2
=
3
x_2 - x_3 = w_2 = 3
x2−x3=w2=3,
x
3
−
x
1
=
w
3
=
−
1
x_3 - x_1 = w_3 = -1
x3−x1=w3=−1, satisfying the conditions.
For example,
x
=
(
−
1
,
1
,
−
2
)
x = (-1, 1, -2)
x=(−1,1,−2) is also a valid answer.
Sample Input 2
4 2
2 1 5
3 4 -3
Sample Output 2
5 0 6 3
For example, x = ( 0 , − 5 , 4 , 1 ) x = (0, -5, 4, 1) x=(0,−5,4,1) and x = ( 5 , 0 , 4 , 1 ) x = (5, 0, 4, 1) x=(5,0,4,1) are also valid answers.
Sample Input 3
5 7
2 1 18169343
3 1 307110901
4 1 130955934
2 3 -288941558
2 5 96267410
5 3 -385208968
4 3 -176154967
Sample Output 3
200401298 182231955 -106709603 69445364 278499365
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
const int N = 2e5 + 10, inf = 0x3f3f3f3f3f3f3f3f;
int n, m;
int h[N], e[N << 1], ne[N << 1], w[N << 1], idx;
int res[N];
void add(int a, int b, int c) {
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}
void dfs(int u) {
for (int i = h[u]; ~i; i = ne[i]) {
int v = e[i];
if (res[v] != inf) continue;
res[v] = res[u] + w[i], dfs(v);
}
}
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
memset(h, -1, sizeof h);
cin >> n >> m;
while (m -- ) {
int u, v, c;
cin >> u >> v >> c;
add(u, v, c), add(v, u, -c);
}
memset(res, 0x3f, sizeof res);
for (int i = 1; i <= n; i ++)
if (res[i] == inf) {
res[i] = 0;
dfs(i);
}
for (int i = 1; i <= n; i ++)
cout << res[i] << " ";
cout << endl;
return 0;
}
E - How to Win the Election
Problem Statement
An election is being held with
N
N
N candidates numbered
1
,
2
,
…
,
N
1, 2, \ldots, N
1,2,…,N. There are
K
K
K votes, some of which have been counted so far.
Up until now, candidate
i
i
i has received
A
i
A_i
Ai votes.
After all ballots are counted, candidate
i
i
i
(
1
≤
i
≤
N
)
(1 \leq i \leq N)
(1≤i≤N) will be elected if and only if the number of candidates who have received more votes than them is less than
M
M
M. There may be multiple candidates elected.
For each candidate, find the minimum number of additional votes they need from the remaining ballots to guarantee their victory regardless of how the other candidates receive votes.
Formally, solve the following problem for each
i
=
1
,
2
,
…
,
N
i = 1,2,\ldots,N
i=1,2,…,N.
Determine if there is a non-negative integer
X
X
X not exceeding
K
−
∑
i
=
1
N
A
i
K - \displaystyle{\sum_{i=1}^{N}} A_i
K−i=1∑NAi satisfying the following condition. If it exists, find the minimum possible such integer.
If candidate
i
i
i receives
X
X
X additional votes, then candidate
i
i
i will always be elected.
Constraints
1
≤
M
≤
N
≤
2
×
1
0
5
1 \leq M \leq N \leq 2 \times 10^5
1≤M≤N≤2×105
1
≤
K
≤
1
0
12
1 \leq K \leq 10^{12}
1≤K≤1012
0
≤
A
i
≤
1
0
12
0 \leq A_i \leq 10^{12}
0≤Ai≤1012
∑
i
=
1
N
A
i
≤
K
\displaystyle{\sum_{i=1}^{N} A_i} \leq K
i=1∑NAi≤K
All input values are integers.
Input
The input is given from Standard Input in the following format:
N
N
N
M
M
M
K
K
K
A
1
A_1
A1
A
2
A_2
A2
…
\ldots
…
A
N
A_N
AN
Output
Let
C
i
C_i
Ci be the minimum number of additional votes candidate
i
i
i needs from the remaining ballots to guarantee their victory regardless of how other candidates receive votes. Print
C
1
,
C
2
,
…
,
C
N
C_1, C_2, \ldots, C_N
C1,C2,…,CN separated by spaces.
If candidate
i
i
i has already secured their victory, then let
C
i
=
0
C_i = 0
Ci=0. If candidate
i
i
i cannot secure their victory under any circumstances, then let
C
i
=
−
1
C_i = -1
Ci=−1.
Sample Input 1
5 2 16
3 1 4 1 5
Sample Output 1
2 -1 1 -1 0
14
14
14 votes have been counted so far, and
2
2
2 votes are left.
The
C
C
C to output is
(
2
,
−
1
,
1
,
−
1
,
0
)
(2, -1, 1, -1, 0)
(2,−1,1,−1,0). For example:
Candidate
1
1
1 can secure their victory by obtaining
2
2
2 more votes, while not by obtaining
1
1
1 more vote. Thus,
C
1
=
2
C_1 = 2
C1=2.
Candidate
2
2
2 can never (even if they obtain
2
2
2 more votes) secure their victory, so
C
2
=
−
1
C_2 = -1
C2=−1.
Sample Input 2
12 1 570
81 62 17 5 5 86 15 7 79 26 6 28
Sample Output 2
79 89 111 117 117 74 112 116 80 107 117 106
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
const int N = 2e5 + 10;
int n, m, k;
int a[N], b[N], c[N];
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
cin >> n >> m >> k;
int sum = 0;
for (int i = 1; i <= n; i ++)
cin >> a[i], b[i] = a[i], sum += a[i];
if (n == 1) {
cout << 0 << endl;
return 0;
}
if (n == m) {
for (int i = 1; i <= n; i ++)
cout << 0 << " ";
cout << endl;
return 0;
}
sort(b + 1, b + 1 + n);
for (int i = 1; i <= n; i ++)
c[i] = c[i - 1] + b[i];
for (int i = 1; i <= n; i ++) {
auto check = [&](int x) -> bool {
int now = a[i] + x, rest = k - x - sum, pos = upper_bound(b + 1, b + 1 + n, now) - b - 1;
if (a[i] < b[n - m + 1]) {
if (pos < n - m + 1) return 0;
return (pos - n + m) * (now + 1) - c[pos] + c[n - m] > rest;
} else {
if (pos < n - m) return 0;
// if (a[i] > b[pos]) return (pos - n + m + 1) * (now + 1) - c[pos] + c[max(0ll, n - m - 1)] > rest;
return (pos - n + m) * (now + 1) - c[pos] + c[max(0ll, n - m - 1)] + a[i] > rest;
}
};
int lo = 0, ro = k - sum, res = -1;
while (lo <= ro) {
int mid = lo + ro >> 1;
if (check(mid)) ro = mid - 1, res = mid;
else lo = mid + 1;
}
cout << res << " ";
}
cout << endl;
return 0;
}
F - Knapsack with Diminishing Values
Problem Statement
There are
N
N
N types of items. The
i
i
i-th type of item has a weight of
w
i
w_i
wi and a value of
v
i
v_i
vi. Each type has
1
0
10
10^{10}
1010 items available.
Takahashi is going to choose some items and put them into a bag with capacity
W
W
W. He wants to maximize the value of the selected items while avoiding choosing too many items of the same type. Hence, he defines the happiness of choosing
k
i
k_i
ki items of type
i
i
i as
k
i
v
i
−
k
i
2
k_i v_i - k_i^2
kivi−ki2. He wants to choose items to maximize the total happiness over all types while keeping the total weight at most
W
W
W. Calculate the maximum total happiness he can achieve.
Constraints
1
≤
N
≤
3000
1 \leq N \leq 3000
1≤N≤3000
1
≤
W
≤
3000
1 \leq W \leq 3000
1≤W≤3000
1
≤
w
i
≤
W
1 \leq w_i \leq W
1≤wi≤W
1
≤
v
i
≤
1
0
9
1 \leq v_i \leq 10^9
1≤vi≤109
All input values are integers.
Input
The input is given from Standard Input in the following format:
N
N
N
W
W
W
w
1
w_1
w1
v
1
v_1
v1
w
2
w_2
w2
v
2
v_2
v2
⋮
\vdots
⋮
w
N
w_N
wN
v
N
v_N
vN
Output
Print the answer.
Sample Input 1
2 10
3 4
3 2
Sample Output 1
5
By choosing
2
2
2 items of type
1
1
1 and
1
1
1 item of type
2
2
2, the total happiness can be
5
5
5, which is optimal.
Here, the happiness for type
1
1
1 is
2
×
4
−
2
2
=
4
2 \times 4 - 2^2 = 4
2×4−22=4, and the happiness for type
2
2
2 is
1
×
2
−
1
2
=
1
1 \times 2 - 1^2 = 1
1×2−12=1.
The total weight is
9
9
9, which is within the capacity
10
10
10.
Sample Input 2
3 6
1 4
2 3
2 7
Sample Output 2
14
Sample Input 3
1 10
1 7
Sample Output 3
12
Solution
具体见文末视频。
Code
#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second
using namespace std;
const int N = 3e3 + 10;
int n, m;
priority_queue<int> heap[N];
int dp[N];
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
cin >> n >> m;
for (int i = 1; i <= n; i ++) {
int w, v;
cin >> w >> v, heap[w].push(v - 1);
}
for (int i = 1; i <= m; i ++)
for (int j = 1; j <= m / i && heap[i].size(); j ++) {
int v = heap[i].top();
heap[i].pop();
for (int k = m; k >= i; k --) dp[k] = max(dp[k], dp[k - i] + v);
heap[i].push(v - 2);
}
cout << *max_element(dp + 1, dp + 1 + m) << endl;
return 0;
}
视频题解
AtCoder Beginner Contest 373(A ~ F 题讲解)
最后祝大家早日