💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
参考文献:
我们考虑使用总变差(TV)正则化来解决图像去噪问题。由于正则化项的不可微性和非线性性,这个问题在计算上可能具有挑战性。我们提出了一种基于新的变量分裂方法的交替方向增广拉格朗日(ADAL)方法,导致可以高效且准确地解决子问题。新算法的全局收敛性已经针对各向异性TV模型得到证明。对于各向同性TV模型,通过进一步的变量分裂,我们能够推导出一种全局收敛的ADAL方法。我们将我们的方法与与之密切相关的分裂Bregman方法[16]进行比较,并展示它们在一组标准测试图像上的计算性能竞争力。
接下来的论文大纲如下。在第2节中,我们首先简要回顾ADAL方法及其在由变量分裂引起的线性约束优化问题中的应用。在第3.1节中,我们描述了针对各向异性TV模型的提出的变量分裂交替方向增广拉格朗日方法,并在第3.2节证明了其全局收敛性。然后在第3.3节和第3.4节讨论了各向同性情况以及我们的算法与分裂Bregman方法之间的差异。在第3.5节,我们提出了一个针对各向同性TV模型的全局收敛变量分裂ADAL变体。在第4节,我们将我们的算法与分裂Bregman方法在一组标准测试图像上进行比较,并展示了我们的方法在去噪速度和质量方面的有效性。
📚2 运行结果
部分代码:
% Initialize Vraiables
Diff_R_I = zeros(size(Img_ori)); % Result - Input
grad_x = zeros(size(Img_ori));
grad_y = zeros(size(Img_ori));
aux_Diff_R_I = zeros(size(Img_ori));
aux_grad_x = zeros(size(Img_ori));
aux_grad_y = zeros(size(Img_ori));
Diff = 100000; % Initialize Diff
Cost_prev = 10^5; % Initialize Cost
alpha = 0.02;
beta = 0.02;
Iter = 0;
% ADMM
while Diff > cost_threshold || Iter < max_Iter
grad_x_tmp = grad_x + aux_grad_x/alpha;
grad_y_tmp = grad_y + aux_grad_y/alpha;
numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori);
numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)];
numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)];
denomin = 1 + alpha/beta*denom_tmp;
numer = numer_alpha+alpha/beta*fft2(numer_beta);
Result = real(ifft2(numer./denomin));
Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)];
Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)];
grad_x = Result_x - aux_grad_x/alpha;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。