💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
文献来源:
摘要:毫米波(mmWave)信号的路径损耗比目前大多数无线应用中使用的微波信号高出数个数量级。因此,毫米波系统必须利用大量天线阵列,通过波束赋形增益来抵消路径损耗。利用多个数据流进行波束赋形,即预编码,可以进一步提高毫米波频谱效率。在传统的多天线系统中,波束赋形和预编码均在基带数字化进行。然而,毫米波系统中混合信号设备的高成本和功耗使得射频域中的模拟处理更具吸引力。这种硬件限制限制了实际毫米波收发器可以应用的预编码器和合并器的可行性集合。在本文中,我们考虑了具有大天线阵列的毫米波系统中的发射预编码和接收合并。我们利用毫米波信道的空间结构,将预编码/合并问题制定为稀疏重构问题。利用基 Pursuit 原理,我们开发了算法,可以准确地近似出最优的无约束预编码器和合并器,从而可以在低成本的射频硬件中实现。我们提供了所提算法性能的数值结果,并表明即使考虑了收发器硬件约束,它们也可以使毫米波系统接近其无约束性能限制。
关键词:毫米波多输入多输出(MIMO)天线阵列波束赋形预编码蜂窝通信稀疏性稀疏重构基 Pursuit 有限反馈
毫米波(mmWave)通信已经在室内无线系统[4]、[5]和固定室外系统[6]中实现了每秒千兆位数据传输速率。最近,毫米波硬件的进步[7]以及频谱的潜在可用性促使无线行业考虑将毫米波用于室外蜂窝系统[8]、[9]。毫米波通信的一个主要区别因素是,与当前大多数无线系统相比,载波频率增加了十倍,这意味着毫米波信号在自由空间传输中经历了数量级的增加的路径损耗。然而,在毫米波系统中的一个有趣的优点是,波长的减小使得可以在发射机和接收机同时配置大型天线阵列。大型阵列可以提供波束赋形增益,以克服路径损耗并建立具有合理信噪比(SNR)的链路。此外,大型阵列可能允许预编码多个数据流,从而提高频谱效率并使系统接近容量[10]、[11]。
尽管在不同载波频率下,预编码的基本原理是相同的,但毫米波系统的信号处理受一组非常规的实际约束。例如,传统的多输入多输出(MIMO)处理通常在基带数字化进行,这样可以控制信号的相位和幅度。然而,数字处理需要为每个天线元素提供专用的基带和射频硬件。不幸的是,目前毫米波混合信号硬件的高成本和功耗排除了这样一种收发器架构,迫使毫米波系统严重依赖模拟或射频处理[7]、[8]。模拟预编码通常使用相移器实现[7]、[8]、[12],这对RF预编码器的元素施加了恒定模数约束。已经考虑了几种方法用于在此类低复杂度收发器中进行预编码[13]–[28]。在[13]–[15]中所述的工作考虑了天线(或天线子集)选择,这具有用更简单的模拟开关替换相移器的优点。
📚2 运行结果
部分代码:
%% System parameters
Nt = [64 256]; % Number of transmit antennas
Nr = [16 64]; % Number of receive antennas
Ns = [1]; % Number of data streams
NumRF = [4 6]; % Number of RF chains for precoding and combining
NumCluster = 8; % Number of clusters
NumRay = 10; % Number of rays per cluster
AS = 7.5; % Angular spread of 7.5 degree
SNR_dB = -40:5:0; % Range of SNR in dB
ITER = 100; % Number of channel generations
%% Fig.3
[Fig3_SE_Optimal,Fig3_SE_Hybrid,Fig3_SE_BeamSteering] = SpatiallySparsePrecoding(Nt(1),Nr(1),Ns,NumRF(1),NumCluster,NumRay,AS,SNR_dB,ITER);
figure();
l1 = plot(SNR_dB,Fig3_SE_Optimal(1,:),'-s','Color',[0 0.5 0],'LineWidth',2.0,'MarkerSize',8.0);hold on;
l2 = plot(SNR_dB,Fig3_SE_Hybrid(1,:),'-o','Color',[0 0.45 0.74],'LineWidth',2.0,'MarkerSize',8.0);hold on;
l3 = plot(SNR_dB,Fig3_SE_BeamSteering(1,:),'-d','Color',[0.85 0.33 0.1],'LineWidth',2.0,'MarkerSize',8.0);hold on;
grid on;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取