【风电功率预测】【多变量输入单步预测】基于REGRESS的风电功率预测研究(Matlab代码实现)

                                   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究内容与方法

1. 数据收集

2. 数据预处理

3. 模型建立

4. 参数估计

5. 模型检验

三、预测应用

四、优缺点分析

优点

缺点

五、未来研究方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于REGRESS(这里主要指回归分析,特别是线性回归或多元线性回归)的风电功率预测研究,主要涉及到利用回归分析的方法来分析和预测风电场的风力发电量。以下是对该研究的详细阐述:

一、研究背景与意义

随着全球能源需求的不断增长和对传统化石能源的限制,风能作为一种可再生、环保的能源形式,受到了越来越多的关注和利用。风电功率预测作为风能利用中的一个重要环节,对于电网的安全稳定运行、风电场的维护检修以及电力市场的竞争力提升都具有重要意义。

二、研究内容与方法

1. 数据收集

首先,需要收集风电场的历史数据,包括风速、风向、温度、湿度等气象数据以及风机的发电量数据。这些数据是后续分析和预测的基础。

2. 数据预处理

对收集到的数据进行清洗、整理,去除异常值和缺失值,确保数据的准确性和完整性。这是提高预测精度的关键步骤。

3. 模型建立

根据回归分析的原理,选择合适的自变量(如风速、风向、温度、湿度等)和因变量(风电发电量),建立回归模型。这里主要采用的是线性回归或多元线性回归模型,通过分析自变量与因变量之间的线性关系来预测未来的风电功率。

4. 参数估计

通过最小二乘法等方法,估计回归模型中的参数(如回归系数)。这些参数反映了自变量对因变量的影响程度。

5. 模型检验

对建立的回归模型进行检验,评估其拟合优度和预测精度。常用的检验方法包括R方检验、F检验、t检验等。

三、预测应用

利用建立的回归模型进行风电功率的预测。通过输入当前或未来的气象数据,模型可以输出对应的风电功率预测值,为电网调度、风电场维护检修等提供指导。

四、优缺点分析

优点
  1. 简单易行:回归分析方法原理简单,易于理解和实现。
  2. 适用性强:可以处理多个自变量与因变量之间的线性关系,适用于风电功率预测等复杂场景。
  3. 预测精度高:在数据量充足且自变量与因变量之间关系较为明确的情况下,回归模型的预测精度较高。
缺点
  1. 线性假设:回归模型假设自变量与因变量之间存在线性关系,而实际上这种关系可能是非线性的,从而导致预测误差。
  2. 数据依赖:回归模型的预测结果高度依赖于输入数据的准确性和完整性,数据质量问题可能影响预测精度。
  3. 忽视其他因素:回归模型可能无法全面考虑所有影响风电功率的因素(如风机故障、电网状况等),从而导致预测结果的不准确。

五、未来研究方向

随着风电技术的不断发展和数据获取技术的提升,基于回归分析的风电功率预测方法也将不断完善。未来研究可以探索以下方向:

  1. 非线性回归模型:引入非线性回归模型以更准确地描述自变量与因变量之间的关系。
  2. 混合模型:结合多种预测模型的优势,构建混合模型以提高预测精度。
  3. 机器学习与深度学习:结合机器学习、深度学习等先进技术来进一步提升风电功率预测的能力。
  4. 数据质量控制与异常检测:加强数据质量控制和异常检测,提高输入数据的准确性和完整性。

综上所述,基于REGRESS的风电功率预测研究具有重要的实际应用价值,但也存在一定的局限性。未来研究应致力于提高预测精度和模型的适用性,以更好地服务于风电行业的发展。

📚2 运行结果

 

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值