【风电功率预测】【多变量输入单步预测】基于CNN的风电功率预测研究(Matlab代码实现)

                             💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、CNN在风电功率预测中的应用

三、研究流程

四、挑战与未来方向

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于卷积神经网络(CNN)的风电功率预测研究,特别是在多变量输入单步预测场景下,是一个结合了深度学习技术优势的有趣领域。随着可再生能源的快速发展,风电作为一种重要的清洁能源形式,其准确预测对于电力系统的稳定运行和电力市场的合理调度至关重要。以下是对基于CNN的风电功率预测研究的详细探讨:

一、研究背景与意义

风能作为一种可再生能源,在全球能源结构转型中扮演着关键角色。然而,由于风力的不稳定性,准确预测风电功率成为了一个技术难题。传统的预测方法,如统计模型(如自回归模型ARIMA)和物理模型(如天气预报结合风电场特性),在处理非线性关系和高维数据时存在局限性。相比之下,CNN凭借其在图像识别和序列数据分析中的出色表现,被引入到风电功率预测领域,以期捕捉时间序列数据中的时空特征。

二、CNN在风电功率预测中的应用

  1. 局部特征提取:CNN通过卷积层自动学习输入数据的局部特征,这对于识别风速、风向等气象因素对风电功率的影响尤为有效。
  2. 权值共享:CNN的权值共享特性减少了模型参数数量,降低了过拟合风险,并加速了训练过程。
  3. 池化操作:通过下采样减少数据维度,提取更加鲁棒的特征,同时保持对时间序列数据变化的敏感性。
  4. 深度结构:多层网络结构能够学习到更复杂的非线性关系,提高预测精度。

三、研究流程

  1. 数据准备:收集与风电场发电功率相关的数据,包括风速、风向、温度、湿度等气象数据以及风电场的历史功率数据。
  2. 数据预处理:对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,确保数据的质量和完整性。
  3. 数据集划分:将数据集划分为训练集和测试集,通常采用70%的数据作为训练集,30%的数据作为测试集。
  4. 数据标准化:对数据进行标准化处理,将不同量纲的数据转化为统一的尺度。
  5. CNN模型构建:设计CNN架构,包括卷积层、池化层、全连接层和输出层。可能还会结合循环神经网络(RNN)或长短时记忆网络(LSTM)来增强对时间序列的捕捉能力。
  6. 网络训练:使用训练集对CNN模型进行训练,通过反向传播算法更新网络参数,使得预测结果逼近实际的风电功率。
  7. 模型评估:使用测试集对训练好的CNN模型进行评估,计算预测误差,如均方根误差(RMSE)、平均绝对误差(MAE)等指标来评估模型的预测精度。

四、挑战与未来方向

尽管基于CNN的风电功率预测取得了显著进展,但仍面临一些挑战:

  1. 数据质量:实际应用中数据可能存在缺失、噪声等问题,需要更先进的数据处理策略。
  2. 模型复杂度:深度学习模型往往需要大量计算资源和较长的训练时间,优化模型结构和算法是未来研究的重点。
  3. 不确定性处理:风能的自然特性导致预测结果存在不确定性,如何在模型中融入不确定性分析是一个研究前沿。

五、结论与展望

基于CNN的风电功率预测是当前能源预测领域的一个活跃研究方向。通过不断的技术创新和算法优化,有望进一步提升预测精度,为风能的有效利用和电力系统的智能化管理提供强有力的支持。未来,可以进一步研究和改进这种方法,以适应不同的风电场景和需求,推动风电行业的发展和进步。

以上内容基于现有研究和技术的综合概述,具体实现细节和算法优化可能需要根据实际情况进行调整。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值