【通过SCM细化增强InSAR相位连接增强】通过正则化锥形相干矩阵在去相关环境中进行相位连接,以减轻相干偏差(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

本文提出了一种增强相位连接的方法,重点是SCM的改进。

该提交提供了一种有效的方法来提高InSAR相位优化中的相位连接性能,重点是样本相干矩阵(SCM)的细化。它建立在现有的工具和方法之上,整合了以前发表的作品中的组件,以增强其功能。
相位连接技术已经显示出减轻时间序列干涉合成孔径雷达(InSAR)数据去相关效应的能力。通过施加时间相位闭合约束,该技术从复杂的样本相干矩阵(SCM)中重建了一致的相位序列。然而,相干性估计的偏差降低了相位链接的性能,尤其是在空间样本支持有限的近零相干环境中。在这项研究中,我们提出了一种增强相位连接的方法,重点是SCM的改进。其背后的动机是通过利用供应链管理中的内部相关性和一致性损失趋势,将锥形供应链管理缩减为缩放身份矩阵。这使得即使在样本量较小的情况下,也可以对SCM幅度进行去偏。我们通过模拟和夏威夷岛上的Sentinel-1数据的实际案例研究展示了该方法的性能。综合比较的结果验证了相干矩阵估计的有效性以及在不同相干场景中对相位连接的增强。

📚2 运行结果

部分代码:

function [V_ph,Coh,V]=EVD_estimator_new(Z,taper,Coh_true)
%this script uses EVD to calculate the optimal solution 
Z(isnan(Z))=0;
NSLC   = size(Z,1);
if nargin < 2
    taper=0;
end
if taper==0
    numer=(Z*Z');
    Z_norm=sum(abs(Z).^2,2);
    CpxCoh=numer./sqrt(Z_norm*Z_norm');
else
    [CpxCoh] = tabasco(Z');
end
if nargin < 3
    Coh = abs(CpxCoh);
else
    Coh = Coh_true;
    CpxCoh = Coh.*exp(1i.*angle(CpxCoh));
end

%% EVD estimator
%positive definite detection
[~,r] = chol(Coh);
e=1e-6;
ncount=0;
while ~(r == 0 && rank(Coh) == NSLC)
    Coh = Coh+eye(NSLC)*e;
    [~,r] = chol(Coh);
    e=2*e;
    ncount=ncount+1;
    if ncount>100
        break;
    end
end
%evd
[V,~]= eig(CpxCoh);
V  = V(:,end);
V  = V./abs(V);
V_ph = angle(V/V(1)); % the phase reference to the first slc

%EOF
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]杨慧.基于极化SAR技术的舰船检测与识别算法研究[D].杭州电子科技大学,2014.

[2]方昊然.基于星载合成孔径雷达的城市基础设施形变监测研究[D].北京交通大学[2024-10-22].

[3]毛志杰,廖桂生,刘向阳,等.基于最小费用流的InSAR干涉相位展开算法[J].信号处理, 2008, 24(3):5.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值