💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要:
网络切片是新的用例和改进的网络性能的推动因素,特别是对于5G专用网络,这为客户和供应商的应用程序开辟了新的商机。另一方面,切片机制为网络管理增加了另一个复杂程度,显著增加了总体拥有成本。完全自动化是必须的,这在3GPP和ITU组织旗下的自主和零接触移动网络的标准化工作中也很明显。此外,在移动网络切片相关研究中存在明显的方法差距,即此类基础设施的容量规模和规划。网络建模工具的概念已经更新,重点增加了移动网络容量规模和规划的功能,本文对此进行了介绍。概述了具有经过彻底验证的方法的数据驱动框架(例如Prophet、神经网络、VARMAX及其单变量等效物-ARMA)。交通预测作为规模确定和规划过程的基础,受到了特别关注。我们评估了如何将该框架用作场景模拟器,以估计任何切片中的流量变化对所有服务的质量(即吞吐量和延迟)的影响。最后,我们解释了该解决方案如何实现基于数字孪生的网络模拟器的概念。
这篇论文有助于解决以下基本问题复杂系统建模与仿真[51]、[52]、[53],特别是用于无线通信中的应用。计算能力、数值和模拟的进步人工智能/机器学习方法以及大量可用的实验数据为研究这一现象的出现提供了新的机会复杂过程的先决条件,这是理解并管理复杂的系统。从这个意义上讲,我们提供证明可以检索和汇总以经验形式从实验数据中获得的知识模型,但具有现象学背景。这会导致模拟定制包括模仿细节复杂系统的特征,通常具有以下特征不适用于机械建模[52]。这使其合法化在数字化背景下使用我们的数据驱动方法现实世界对象的表示(此处为:5G网络)。最后,知识以数据驱动的形式进行概括数字孪生体能够实现描述性和预测性推理,以及还有一些动作现在由手动处理使用专业知识,例如5G网络规划和尺寸标注。在本文中,我们描述了一个框架网络规模确定和规划过程。已经评估了几种用于交通预测的多变量方法,VARMAX和LSTM表现出了最佳拟合真实的网络时间序列。细胞环境条件在交通模型数据之上考虑了这些因素。细胞级网络切片建模的方法已经比较:切片特定和所有切片的通用。这个通用模型具有更好的准确性,更具有弹性,可用于场景模拟特定切片或所有切片的流量变化文章中也概述了这一点。所描述的框架可以是用于“假设”分析,例如,评估容量应在切片上推荐和规划扩展以及特定场景下的细胞水平。将小区级建模扩展到BTS和网络该水平被计划为报告研究的下一步。此外,所选方法的稳健性和长期规划案例将每较长实际周期进行一次评估数据样本被获取。此外,我们还可以模拟在所采用的模型中生成的任何任意数据周期和情景(即模型的一些参数变化)。这就是使用这种模型的附加价值。在这种情况下,长期预测评估可以如果长期数据可用,则进行。我们展望预测其他指标,如能耗和成功率(或损失率,如PDR)也可以添加到未来框架。然而,由于这些信号具有其他考虑到这些特征,我们希望使用不同的模型。关于模拟智能方法[51]这里为5G无线的尺寸和规划网络,可以用以下方式扩展数据驱动模型专门用于优化资源管理的代理模块在切片网络中[54]。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Python代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取