【凯斯西储大学】基于S变换-CNN,ResNet,CNN-SVM,CNN-LSTM的轴承诊断方法研究(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于S变换-CNN、ResNet、CNN-SVM、CNN-LSTM的轴承诊断方法研究

一、S变换-CNN方法

二、ResNet方法

三、CNN-SVM方法

四、CNN-LSTM方法

五、方法对比与总结

📚2 运行结果

2.1 S变换时频图

2.2 CNN分类结果

2.3 CNN-LSTM分类结果

2.4 CNN-SVM分类结果

2.5 CNN-BiGRU分类结果

2.6 ResNet分类结果

🎉3 参考文献 

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

文章:

基于S变换-CNN、ResNet、CNN-SVM、CNN-LSTM的轴承诊断方法研究

一、S变换-CNN方法
  1. 基本原理与结构
    S变换-CNN结合了时频分析与深度学习的优势。S变换通过高斯窗函数动态调整时频分辨率,解决了短时傅里叶变换和小波变换的局限性,尤其适用于非平稳信号处理。其数学表达式为:

    生成的二维时频图输入CNN进行特征提取,网络结构通常包括卷积层(提取局部特征)、池化层(降维)和全连接层(分类)。

  2. 实验性能与优势

    • 数据集:基于凯斯西储大学(CWRU)数据集,涵盖10种故障类型(内圈、外圈、滚动体等),样本量达20,000个,训练集占比80%。
    • 准确率:最高可达99.8%,显著高于传统CNN(81.2%)、SVM(83.7%)和时域模型(84.3%)。
    • 优势:能同时捕捉时域和频域特征,对非平稳信号处理能力突出;CNN的自动化特征提取减少人工干预。
    • 局限性:S变换生成的高维矩阵导致计算量大,且故障类型覆盖有限,泛化能力需进一步验证。

二、ResNet方法
  1. 模型改进与特点
    ResNet通过残差块解决深度网络梯度消失问题,引入跳跃连接(Shortcut Connection)提升特征复用能力。在轴承诊断中,常结合模态分解(如VMD、EMD)进行信号预处理,筛选有效分量以增强特征表达。改进方向包括:

    • 多尺度特征融合:通过扩张卷积扩大感受野,提升复杂工况下的特征提取能力。
    • 注意力机制:SE-ResNet(Squeeze-and-Excitation模块)和CBAM-ResNet(通道与空间注意力)显著提升模型泛化性。
  2. 实验数据与性能对比

    • 准确率
  • 基础ResNet:97.28%(同工况),迁移后94.14%~96.86%(跨工况)。
  • SE-ResNet:单工况99.61%,跨工况迁移后达99.71%。
  • 结合VMD/EMD的特征融合方法:最高99.8%,较传统CNN提升近10%。
    • 优势:收敛速度快(100次迭代内稳定)、鲁棒性强,尤其适合小样本和噪声环境。
    • 应用场景:地铁牵引电机轴承复合故障诊断中,结合多信号融合(振动+声发射)和MTF编码,准确率超99%。

三、CNN-SVM方法
  1. 架构与实现方式
    CNN-SVM将CNN作为特征提取器,替代传统Softmax分类器,SVM作为后端分类器。具体流程:

    • CNN部分:卷积层提取图像特征,池化层降维,Flatten层向量化特征。
    • SVM部分:利用核函数(如RBF)映射至高维空间,寻找最优分类超平面。
    • 改进方向:并行多尺度卷积(如5×100至9×100窗口)增强特征多样性。
  2. 性能对比与适用性

    • 准确率:混合模型在泰米尔手写字母识别中达98.54%,高于单独CNN(98%)和SVM(97.13%);在轴承诊断中较传统CNN提升约10%。
    • 计算效率:SVM分类器泛化误差低,但混合模型训练时间较长(需端到端调参)。
    • 适用场景:适合高维特征分类任务,但对计算资源要求较高。

四、CNN-LSTM方法
  1. 时间序列处理机制
    CNN-LSTM结合空间特征提取与时序建模能力:

    • 编码器(CNN) :一维卷积层提取局部特征,池化层压缩维度。
    • 解码器(LSTM) :通过门控机制(输入门、遗忘门、输出门)捕捉长期依赖关系。
    • 优化技术:Dropout防止过拟合,Adam算法加速收敛。
  2. 在振动信号处理中的优势

    • 多工况适应:使用21,000组跨设备数据训练,噪声环境下准确率下降小于5%,显著优于单一模型。
    • 特征融合:时频图(如STFT)输入CNN-LSTM,同时利用空间结构和时序动态,分类准确率超99%。
    • 工业应用案例:在机床轴承寿命预测中,CNN-LSTM较单一CNN或LSTM误差降低20%。

五、方法对比与总结
方法优势局限性典型准确率适用场景
S变换-CNN时频特征全面,适合非平稳信号计算量大,泛化能力有限99.7%~99.8%高精度单一工况诊断
ResNet深度特征提取,跨工况迁移性强需结合模态分解预处理99.71%(SE-ResNet)复杂噪声环境与小样本任务
CNN-SVM分类边界清晰,适合高维特征训练时间长,资源消耗高98.54%(混合模型)多类别精细分类
CNN-LSTM时序建模能力强,抗噪声鲁棒性高需大量时序数据训练>99%(工业数据集)寿命预测与复合故障诊断

未来研究方向

  1. 轻量化设计:优化S变换计算效率,结合MobileNet等轻量CNN。
  2. 多模态融合:整合振动、温度、声发射等多源信号,提升诊断全面性。
  3. 迁移学习与元学习:解决小样本和零样本故障诊断问题。
  4. 可解释性增强:通过注意力热图或t-SNE可视化,提升模型可信度。

以上方法在轴承诊断中各有侧重,实际应用中需根据数据特性、工况复杂度及实时性要求综合选择。

📚2 运行结果

2.1 S变换时频图

西储:

江南:

2.2 CNN分类结果

2.3 CNN-LSTM分类结果

2.4 CNN-SVM分类结果

2.5 CNN-BiGRU分类结果

2.6 ResNet分类结果

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值