💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
三、明文敏感性分析(Plaintext Sensitivity Analysis)
四、密钥敏感性分析(Key Sensitivity Analysis)
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
关于图像加密、Lyapunov指数、明文敏感性分析、密钥敏感性分析(包括定性分析和图像解密系统的密钥敏感性分析)的研究如下:
一、图像加密
图像加密是保护图像数据机密性的重要手段。随着数字信息技术的飞速发展,图像数据的安全传输和存储变得越来越重要。图像加密算法通常采用位置置换、改变像素值或混合加密形式来实现图像的加密。其中,置乱是图像加密常用的手段之一,它可以通过打乱图像像素的位置来破坏图像的原始结构,从而实现加密效果。然而,置乱加密的安全性存在一定的挑战,如无法抵抗已知明文攻击和选择明文攻击等。
二、Lyapunov指数与图像加密
Lyapunov指数是混沌理论中的一个重要概念,它用于描述系统运动的混乱程度。在图像加密领域,Lyapunov指数可以被用于设计更加复杂的加密算法。例如,一种基于Lyapunov指数的图像压缩加密方法,该方法结合了二维离散余弦变换(DCT)和Hoffman编码,以及超混沌映射来实现图像的压缩和加密。这种方法不仅提高了加密的安全性,还实现了图像的压缩存储。
三、明文敏感性分析(Plaintext Sensitivity Analysis)
明文敏感性分析是密码学领域的一个重要研究方向,它关注于密码算法对明文变化的敏感性。在图像加密中,明文敏感性分析可以帮助评估加密算法在保护图像数据机密性方面的性能。如果加密算法对明文的变化非常敏感,那么即使只有微小的明文变化也会导致加密结果的显著变化,从而提高加密的安全性。
四、密钥敏感性分析(Key Sensitivity Analysis)
-
定性分析(Qualitative Analysis):
- 密钥敏感性分析的定性分析主要关注于密钥对加密结果的影响程度。在图像加密中,这通常涉及评估不同密钥下加密结果的差异性和稳定性。通过定性分析,可以初步了解加密算法对密钥的敏感性,并为后续的定量分析提供基础。
-
定量分析(Quantitative Analysis):
- 密钥敏感性分析的定量分析则更加具体和量化。它通常涉及计算密钥变化对加密结果的具体影响程度,如通过计算密钥变化导致的加密结果差异度来衡量。在图像加密中,这可以通过比较不同密钥下加密图像的相似度或差异度来实现。
-
图像解密系统的密钥敏感性分析:
- 对于图像解密系统而言,密钥敏感性分析尤为重要。因为解密系统的安全性很大程度上取决于密钥的复杂性和保密性。如果密钥对解密结果的影响不够敏感,那么攻击者可能更容易通过猜测或穷举密钥的方式来破解加密图像。因此,对图像解密系统进行密钥敏感性分析,可以评估其安全性并采取相应的改进措施。
📚2 运行结果
部分代码:
clc;%清除当前command区域的命令
clear;%清空环境变量
P1 = imread('lena.bmp');
iptsetpref('imshowborder','tight');%图像处理工具箱设置首选项,图像展示框,紧紧围绕图像
x0=rand(2,1000)*80-40;y0=rand(2,1000)*80-40;
z0=rand(2,1000)*80+1;w0=rand(2,1000)*500-250;
nubLex=zeros(2,3);nubLey=zeros(2,3);nubLez=zeros(2,3);nubLew=zeros(2,3);
N=10;tic;
for i=1:N
K1=[x0(1,i) y0(1,i) z0(1,i) w0(1,i)];
C1=TpEncrypt(P1,K1);
%密钥做微小改变
K2=K1;K2(1)=K2(1)+10^(-13);
%用改变后的密钥解密图像
P1N1=TpDecrypt(C1,K2);
K3=K1;K3(2)=K3(2)+10^(-13);
P1N2=TpDecrypt(C1,K3);
K4=K1;K4(3)=K4(3)+10^(-13);
P1N3=TpDecrypt(C1,K4);
K5=K1;K5(4)=K5(4)+10^(-12);
P1N4=TpDecrypt(C1,K5);
%明文图与用改变密钥后解密出的图像相比
nubLex(1,:)=nubLex(1,:)+NPCRUACIBACI(P1,P1N1);
nubLey(1,:)=nubLey(1,:)+NPCRUACIBACI(P1,P1N2);
nubLez(1,:)=nubLez(1,:)+NPCRUACIBACI(P1,P1N3);
nubLew(1,:)=nubLew(1,:)+NPCRUACIBACI(P1,P1N4);
%用随机生成的密钥解密图像
KK1=[x0(2,i) y0(2,i) z0(2,i) w0(2,i)];
PP1=TpDecrypt(C1,KK1);
%密钥做微小改变
KK2=KK1;KK2(1)=KK2(1)+10^(-13);
%用改变后的密钥解密图像
PP1N1=TpDecrypt(C1,KK2);
KK3=KK1;KK3(2)=KK3(2)+10^(-13);
PP1N2=TpDecrypt(C1,KK3);
KK4=KK1;KK4(3)=KK4(3)+10^(-13);
PP1N3=TpDecrypt(C1,KK4);
KK5=KK1;KK5(4)=KK5(4)+10^(-12);
PP1N4=TpDecrypt(C1,KK5);
%用随机生成的密钥解密得到的图像与用改变密钥后解密出的图像相比
nubLex(2,:)=nubLex(2,:)+NPCRUACIBACI(PP1,PP1N1);
nubLey(2,:)=nubLey(2,:)+NPCRUACIBACI(PP1,PP1N2);
nubLez(2,:)=nubLez(2,:)+NPCRUACIBACI(PP1,PP1N3);
nubLew(2,:)=nubLew(2,:)+NPCRUACIBACI(PP1,PP1N4);
end
nubLex=nubLex/N;nubLey=nubLey/N;nubLez=nubLez/N;nubLew=nubLew/N;
toc;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]孙鑫,易开祥,孙优贤.基于混沌系统的图像加密算法[J].计算机辅助设计与图形学学报, 2002, 14(2):4.
[2]李昌刚,韩正之,张浩然.图像加密技术综述[J].计算机研究与发展, 2002.DOI:CNKI:SUN:JFYZ.0.2002-10-023.
[3]马在光,丘水生.基于广义猫映射的一种图像加密系统[J].通信学报, 2003, 24(2):7.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取