时间序列无痛入门(四)

本节主要介绍几个主要的线性时间模型(Linear time series models)

1. 自回归模型 —— Autoregressive Processes (AR)

2. 移动平均模型 —— Moving Average Processes (MA)

3. 自回归移动平均模型 —— Autoregressive Moving Average Processes (ARMA)

4. 自回归整合移动平均模型 —— Autoregressive Integrated Moving Average Processes (ARIMA)

第一印象

模型名称

英文名

含义

特点

自回归模型

Autoregressive (AR)

当前值由过去自身的值线性决定

只依赖历史值;适用于平稳序列;模型简单

移动平均模型

Moving Average (MA)

当前值由过去误差项的线性组合决定

依赖过去的白噪声;适用于平稳序列;可处理短期波动

自回归移动平均模型

Autoregressive Moving Average (ARMA)

综合AR与MA模型,考虑历史值和误差项

更灵活;适用于平稳序列;表达能力强于AR或MA单独使用

自回归整合移动平均模型

Autoregressive Integrated Moving Average (ARIMA)

对非平稳序列进行差分处理后再建ARMA模型

适用于非平稳序列;可处理趋势;实际应用中非常常见

1. 自回归模型 —— Autoregressive Processes (AR)

一般情形

一个阶数为 p 的自回归过程(记作 AR(p)),是一组随机变量 \{X_t\},定义为:

X_t = \mu + \alpha_1 (X_{t-1} - \mu) + \alpha_2 (X_{t-2} - \mu) + \cdots + \alpha_p (X_{t-p} - \mu) + e_t,

意思是一个时间点的值是它前 p 个时间点的线性组合,加上一点随机误差。其中\mu, \alpha_i \in \mathbb{R},对 i = 1, \ldots, p,都是常数参数。

锐评:

• 如果\alpha 接近 1,表示序列有很强的延续性;

• 如果 \alpha接近 0,说明几乎是白噪声。

最简单的自回归过程是 AR(1) 模型:

X_t = \mu + \alpha (X_{t-1} - \mu) + e_t.

有趣的是:AR(1)过程X_t也可以表示为一个双边无限过程(即无限阶的移动平均 MA 过程):

X_t = \mu + \sum_{j=0}^{\infty} \alpha^j e_{t-j},

期望:E(X_t) = \mu

当前时刻的方差\gamma_0= \text{Cov}(X_t, X_t)=Var(k)

\gamma_0 = \frac{\sigma^2}{1 - \alpha^2} \quad \text{when } |\alpha| < 1.

当前值与后k期之间的协方差:\gamma_k = \text{Cov}(X_t, X_{t+k})

\gamma_k = \alpha^k \gamma_0,

推导:\gamma_k = \text{Cov}(X_t, X_{t-k}) = \text{Cov}(\mu + \alpha(X_{t-1} - \mu) + e_t, X_{t-k}) = \alpha \, \text{Cov}(X_{t-1}, X_{t-k}) = \alpha \gamma_{k-1}

由此可得:\gamma_k = \alpha^k \gamma_0 = \alpha^k \frac{\sigma^2}{1 - \alpha^2}

上述内容表明:要使 AR(1) 过程是平稳的,必须满足 |\alpha| < 1

因此特征方程的根要大于1,才能说过程是平稳的

2.移动平均过程(Moving Average Processes)

一般情况:

一个阶数为 q 的移动平均过程(记作 MA(q)),是一组随机变量\{X_t\},其定义如下:

X_t = \mu + e_t + \beta_1 e_{t-1} + \cdots + \beta_q e_{t-q},

解释:一个阶数为 q 的移动平均过程(MA(q))是由当前误差项和过去 q 个误差项的加权和组成的。

简化版

MA(1) 过程的定义公式为:X_t = \mu + e_t + \beta e_{t-1}.

根据白噪声的性质,可以推导出 MA(1) 过程的均值为:

\mu_t = \mu

以及它的自协方差函数如下:

\gamma_0 = \text{Var}(e_t + \beta e_{t-1}) = (1 + \beta^2)\sigma^2

\gamma_1 = \text{Cov}(e_t + \beta e_{t-1}, e_{t-1} + \beta e_{t-2}) = \beta \sigma^2

\gamma_k = 0 \quad \text{ for } k > 1

 原因是 MA(1) 模型只依赖最多一阶误差项,滞后超过 1 的部分彼此独立,故协方差为 0。

知识点:ACF(自相关函数)不能唯一确定 MA(1) 模型的参数。

ACF(自相关函数):\rho_k = \frac{\gamma_k}{\gamma_0}因此 \rho_0 = 1, \quad \rho_1 = \frac{\beta}{1 + \beta^2}, \quad \rho_k = 0 \quad \text{for } k > 1

我们注意到,对于\beta = 0.5\beta = 2,都有:\rho_1 = 0.4

结论:不同的参数 \beta 可能得到相同的 ACF,因此 ACF 无法唯一确定 MA(1) 模型的参数。

MA(q)性质:可逆性。MA(q) 过程是可逆的,当且仅当其滞后多项式的根全部在单位圆之外(即根的模大于1)。

3.自回归移动平均过程(ARMA 过程)Autoregressive moving average processes

这是一个混合模型,结合了:

AR(p)(自回归)部分:依赖于之前的观测值 X_{t-1}, \dots, X_{t-p}

MA(q)(滑动平均)部分:依赖于之前的误差项e_{t-1}, \dots, e_{t-q}

ARMA(p, q) 过程的定义公式为:

X_t = \mu + \alpha_1 (X_{t-1} - \mu) + \cdots + \alpha_p (X_{t-p} - \mu) + e_t + \beta_1 e_{t-1} + \cdots + \beta_q e_{t-q}

简化: ARMA(1,1)

X_t = \mu + \alpha (X_{t-1} - \mu) + e_t + \beta e_{t-1}.

完整的 ACF不在这里一一推导了,相较于之前的两种模型有点复杂。料你们也不想看,我也不想看。

4.自回归积分滑动平均过程(ARIMA)Autoregressive integrated moving average processes

如果序列 Y_t = \nabla X_t平稳过程,那么原始过程\{X_t\}I(1),并被归类为一个 ARIMA(p, 1, q) 过程。

换句话说,如果一个序列的一阶差分是平稳的,那么它就可以用 ARMA(p, q) 模型来建模。

如果时间序列 \{X_t\}差分了 d后变为平稳序列,差分结果表示为 Y_t = \nabla^d X_t,并服从 ARMA(p, q) 模型,则原始序列 \{X_t\} 被称为 ARIMA(p, d, q) 模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值