机器学习数学基础例题[一]: 范数, 逆, 投影, Gram-Schmidt正交化, 行列式展开, 初等变换, 特征值, 特征向量

目录

1.求矩阵的[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]的1范数、2范数、无穷范数、F范数。求向量x=(-1, 2, 4)^T的0范数,1范数,2范数和无穷范数。 首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果

计算公式:

实现代码:

2.求向量x=(4,2,4,3)^T的0范数,1范数,2范数和无穷范数。自动生成一个3行列的矩阵,求矩阵的1-范数、2-范数、无穷-范数、F-范数。首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果。

计算公式:

实现代码:

3.随机初始化一个10维向量,求向量的0范数,1范数,2范数和无穷范数。求矩阵[[5, 1, 0, -2], [2, 0, 3, 1], [4, 1, 2, 5], [0, -3, 1, 2]]的1-范数、2-范数、无穷范数、F-范数。首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果。

计算公式:

实现代码:

4.对于矩阵[[1,2,3],[4,5,6],[7,8,9]],判断矩阵是否可逆,求矩阵的秩。如果可逆,求矩阵的逆矩阵。给出具体的判断矩阵可逆的方法、求秩和可逆矩阵的计算方法。最后给出基于代码的计算和结果。

如何判断矩阵是否可逆:

怎样求矩阵的秩:

怎样计算矩阵的逆:

实现代码:

5.自动生成一个n阶方阵,判断矩阵是否可逆,求矩阵的秩。如果可逆,求矩阵的逆矩阵。给出具体的判断矩阵可逆的方法、求秩和可逆矩阵的计算方法。最后给出基于代码的计算和结果。

解题步骤:

代码实现:

6.求向量(1, 1, 1)^T投影到一维子空间span{(1, 3, 2)^T}的坐标、投影、投影矩阵

相关定义:

一般求解步骤:

求解步骤:

 代码实现:

7.求向量(6, 0, 0)^T投影到一维子空间span{(1, 1, 2)^T,(0, 1, 2)^T}的坐标、投影、投影矩阵。

求解步骤:

代码实现:

8.利用Gram-Schmidt 正交化求向量组a1 = (-1,2,4)^T,a2=(2,2,0)^T生成子空间的标准正交基。

相关定义:

一般求解步骤:

求解步骤:

实现代码:

9.行列式按行按列展开

 介绍

按行展开

按列展开

例子

10.用初等变换法化二次型f1(x_1,x_2,x_3)=x_1 * x_2 + x_1 * x_2 - 3 * x_2 *x_3 为标准形。

求解步骤:

11. 用初等变换法化二次型f1(x_1,x_2,x_3)=4 * x_1 * x_2 +2 * x_1 * x_3 - x_2 *x_3 为标准形。

求解步骤:

12.以H2=((1, 1),(1, -1))为有序基底,求向量(3,4)^T在这组基底下的坐标。求向量(3,4)^T经过H2线性变换得到的向量。

解题步骤:


1.求矩阵的[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]的1范数、2范数、无穷范数、F范数。求向量x=(-1, 2, 4)^T的0范数,1范数,2范数和无穷范数。 首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果

计算公式:

矩阵的不同范数的定义如下:

1. 1范数(L1范数):矩阵的每一列的绝对值之和中的最大值。

2. 2范数(L2范数):矩阵的特征值中的最大值的平方根。

3. 无穷范数:矩阵的每一行的绝对值之和中的最大值。

4. F范数(Frobenius范数):矩阵的每个元素的平方和的平方根。

对于向量的不同范数的定义如下:

1. 0范数:向量中非零元素的个数。

2. 1范数(L1范数):向量的每个元素的绝对值之和。

3. 2范数(L2范数):向量的每个元素的平方和的平方根。

4. 无穷范数:向量中绝对值最大的元素。

实现代码:
import numpy as np
# 定义矩阵
matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
# 1范数
norm_1 = np.linalg.norm(matrix, ord=1)
# 2范数
norm_2 = np.linalg.norm(matrix, ord=2)
# 无穷范数
norm_inf = np.linalg.norm(matrix, ord=np.inf)
# F范数
norm_F = np.linalg.norm(matrix, ord='fro')
# 输出
print(f"矩阵的1范数:{norm_1}")
print(f"矩阵的2范数:{norm_2}")
print(f"矩阵的无穷范数:{norm_inf}")
print(f"矩阵的F范数:{norm_F}")

# 定义向量
vector = np.array([-1, 2, 4])
# 0范数
norm_0 = np.count_nonzero(vector)
# 1范数
norm_1 = np.linalg.norm(vector, ord=1)
# 2范数
norm_2 = np.linalg.norm(vector, ord=2)
# 无穷范数
norm_inf = np.linalg.norm(vector, ord=np.inf)
# 输出
print(f"向量的0范数:{norm_0}")
print(f"向量的1范数:{norm_1}")
print(f"向量的2范数:{norm_2}")
print(f"向量的无穷范数:{norm_inf}")

2.求向量x=(4,2,4,3)^T的0范数,1范数,2范数和无穷范数。自动生成一个3行列的矩阵,求矩阵的1-范数、2-范数、无穷-范数、F-范数。首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果。

计算公式:

实现代码:
import numpy as np

# 定义向量x
x = np.array([4, 2, 4, 3])

# 计算不同范数
norm_0 = np.count_nonzero(x)
norm_1 = np.sum(np.abs(x))
norm_2 = np.linalg.norm(x)
norm_inf = np.max(np.abs(x))

print(f"向量x的0范数:{norm_0}")
print(f"向量x的1范数:{norm_1}")
print(f"向量x的2范数:{norm_2}")
print(f"向量x的无穷范数:{norm_inf}")

# 生成一个3x3的随机矩阵M
M = np.random.rand(3, 3)

# 计算不同范数
norm_1 = np.max(np.sum(np.abs(M), axis=0))
norm_2 = np.sqrt(np.max(np.linalg.eigvals(M.T @ M)))
norm_inf = np.max(np.sum(np.abs(M), axis=1))
norm_F = np.linalg.norm(M, ord='fro')

print(f"矩阵M的1范数:{norm_1}")
print(f"矩阵M的2范数:{norm_2}")
print(f"矩阵M的无穷范数:{norm_inf}")
print(f"矩阵M的F范数:{norm_F}")

3.随机初始化一个10维向量,求向量的0范数,1范数,2范数和无穷范数。求矩阵[[5, 1, 0, -2], [2, 0, 3, 1], [4, 1, 2, 5], [0, -3, 1, 2]]的1-范数、2-范数、无穷范数、F-范数。首先给出具体的计算公式,然后给出实现代码和基于代码的计算结果。

计算公式:

实现代码:
random_vector = np.random.rand(10)

# 计算不同范数
norm_0 = np.count_nonzero(random_vector)
norm_1 = np.sum(np.abs(random_vector))
norm_2 = np.linalg.norm(random_vector)
norm_inf = np.max(np.abs(random_vector))

print(f"随机向量的0范数:{norm_0}")
print(f"随机向量的1范数:{norm_1}")
print(f"随机向量的2范数:{norm_2}")
print(f"随机向量的无穷范数:{norm_inf}")

# 定义矩阵
matrix = np.array([[5, 1, 0, -1], [2, 0, 3, 1], [4, 1, 2, 5], [0, -3, 1, 2]])

# 计算不同范数
norm_1 = np.max(np.sum(np.abs(matrix), axis=0))
norm_2 = np.sqrt(np.max(np.linalg.eigvals(matrix.T @ matrix)))
norm_F = np.linalg.norm(matrix, ord='fro')

print(f"矩阵的1范数:{norm_1}")
print(f"矩阵的2范数:{norm_2}")
print(f"矩阵的F范数:{norm_F}")

4.对于矩阵[[1,2,3],[4,5,6],[7,8,9]],判断矩阵是否可逆,求矩阵的秩。如果可逆,求矩阵的逆矩阵。给出具体的判断矩阵可逆的方法、求秩和可逆矩阵的计算方法。最后给出基于代码的计算和结果。

如何判断矩阵是否可逆:

要判断矩阵是否可逆,可以使用以下方法:

1. 计算矩阵的行列式,如果行列式不等于零,那么矩阵可逆。

2. 使用高斯消元法将矩阵转化为行阶梯形式,如果每一行都有非零元素,那么矩阵可逆。

3. 计算矩阵的秩,如果秩等于矩阵的行数(或列数),那么矩阵可逆。

怎样求矩阵的秩:

1.将矩阵化为行阶梯形式(也称为行简化形式):

  • 1.开始时,将矩阵的第一行作为当前处理的行。
  • 2.通过将当前处理的行与下面的行相加或相减,将矩阵的下面的行中的第一个非零元素变为1,并且将该元素下面的所有元素变为0。
  • 3.移动到下一行,重复上述步骤,直到处理完所有行或列。

2.计算行阶梯形式中非零行的数量,这个数量就是矩阵的秩。

请注意,矩阵的秩也可以通过其他方法来计算,如奇异值分解、特征值分解等。不同的方法可能适用于不同类型的矩阵,但高斯消元法通常是最常用的方法,尤其对于小型矩阵来说。

怎样计算矩阵的逆:

要计算一个矩阵的逆,需要确保这个矩阵是可逆的,也就是它是一个方阵(行数等于列数),并且其行列式不等于零。如果矩阵满足这两个条件,你可以使用以下方法之一来计算它的逆:

1. 伴随矩阵法:

   这个方法涉及到计算矩阵的伴随矩阵和行列式。伴随矩阵是原矩阵的转置的代数余子式矩阵,然后将伴随矩阵除以原矩阵的行列式。具体步骤如下:

   a. 计算原矩阵的行列式(通常使用高斯消元法)。

   b. 计算原矩阵的伴随矩阵,其中每个元素是对应位置的代数余子式(矩阵中每个元素的代数余子式是将该元素所在行和列删除后的子矩阵的行列式)。

   c. 将伴随矩阵除以原矩阵的行列式,得到逆矩阵。

2. 高斯-约当消元法:

   这是一种比较复杂的方法,它利用矩阵的增广形式,将原矩阵与单位矩阵(同样大小的矩阵,主对角线元素为1,其他元素为0)相结合,通过一系列行变换将原矩阵变为单位矩阵,同时保持单位矩阵相对于原矩阵的变化,最终得到的就是原矩阵的逆。

3. 数值计算方法:

   对于大型矩阵,使用数值计算方法如迭代法或分解法可能更为实际,例如LU分解、QR分解等。这些方法可以用计算机软件实现,例如MATLAB、Python中的NumPy库等。

计算矩阵逆是一个复杂的过程,通常需要计算机算法来执行。在实际应用中,最好使用现成的数学库或软件工具来计算矩阵的逆,而不是手动执行这些步骤,以减少错误的可能性。例如,使用Python中的NumPy库可以很容易地计算矩阵的逆。

实现代码:
import numpy as np

# 定义矩阵
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 判断矩阵是否可逆
det = np.linalg.det(matrix)
rank = np.linalg.matrix_rank(matrix)

if det != 0:
    is_invertible = True
else:
    is_invertible = False

if is_invertible:
    # 求逆矩阵
    inverse_matrix = np.linalg.inv(matrix)
else:
    inverse_matrix = None

print(f"矩阵是否可逆: {is_invertible}")
print(f"矩阵的秩: {rank}")

if is_invertible:
    print("矩阵的逆矩阵:")
    print(inverse_matrix)

5.自动生成一个n阶方阵,判断矩阵是否可逆,求矩阵的秩。如果可逆,求矩阵的逆矩阵。给出具体的判断矩阵可逆的方法、求秩和可逆矩阵的计算方法。最后给出基于代码的计算和结果。

解题步骤:

代码实现:
import numpy as np

# 随机生成n阶方阵,这里n取5
n = 5
random_matrix = np.random.rand(n, n)

# 判断矩阵是否可逆
det = np.linalg.det(random_matrix)
rank = np.linalg.matrix_rank(random_matrix)

if det != 0:
    is_invertible = True
else:
    is_invertible = False

if is_invertible:
    # 求逆矩阵
    inverse_matrix = np.linalg.inv(random_matrix)
else:
    inverse_matrix = None

print(f"随机生成的矩阵是否可逆: {is_invertible}")
print(f"随机生成的矩阵的秩: {rank}")

if is_invertible:
    print("随机生成的矩阵的逆矩阵:")
    print(inverse_matrix)

6.求向量(1, 1, 1)^T投影到一维子空间span{(1, 3, 2)^T}的坐标、投影、投影矩阵

相关定义:

1. 向量:向量是由一组有序数值组成的对象,通常表示为列向量或行向量。在二维空间中,向量可以表示为 (x, y),在三维空间中可以表示为 (x, y, z)。

2. 子空间:子空间是一个向量空间的子集,它本身也是一个向量空间,满足向量加法和标量乘法的封闭性。子空间可以是零向量空间、一维空间、二维空间等。

3. 基向量:一组向量可以生成一个子空间,这组向量被称为子空间的基向量。基向量是线性无关的,并且可以用来表示子空间内的所有向量。

4. 坐标:在线性代数中,坐标是用来描述一个向量在某个坐标系中的位置的数值。在某个基向量集合下,一个向量的坐标是表示该向量在每个基向量上的投影值。

5. 投影:向量在一个子空间上的投影是一个与该向量最接近的子空间上的向量。它是原始向量在子空间上的线性组合,使得原始向量与投影向量的差向量正交于子空间。

6. 投影矩阵:投影矩阵是一个矩阵,它用于将一个向量投影到一个子空间上。它是一个线性变换矩阵,将任意向量映射到子空间的投影向量上。

一般求解步骤:
 

求一个向量在一个子空间上的坐标、投影和投影矩阵的一般步骤如下:

1. 定义问题:确定所给的向量和子空间。

2. 计算子空间的基向量:找到子空间的一组基向量。这些基向量是子空间的线性组合,可以用来表示整个子空间。

3. 计算坐标:计算给定向量在子空间上的坐标。这可以通过计算投影来完成,根据投影的定义,使用内积来计算坐标。

   首先,计算向量v和子空间的基向量之间的内积。
   然后,计算子空间的基向量的模长的平方。
   最后,将内积除以模长的平方,得到坐标。

4. 计算投影向量:使用坐标和子空间的基向量,计算向量在子空间上的投影向量。投影向量是坐标与子空间的基向量的线性组合。

5. 计算投影矩阵:投影矩阵是将任意向量投影到给定子空间的线性变换矩阵。可以使用子空间的基向量来计算投影矩阵。

   将子空间的基向量排列成一个矩阵,每个基向量作为一列。
   计算这个矩阵的乘积,即矩阵和其转置的乘积,然后除以模长的平方。

6. 得到结果:根据计算,得到向量在子空间上的坐标、投影向量以及投影矩阵。

这些步骤是通用的,适用于任何向量和子空间。要注意的是,向量和子空间必须满足一定的条件,如向量必须在子空间上有投影,子空间必须是非空且可以通过其基向量生成。在实际计算中,可以使用线性代数工具或计算机软件来简化计算过程。

求解步骤:

1. 计算子空间的基向量:
   子空间的基向量是 span{(1, 3, 2)^T} 中的向量 (1, 3, 2)^T。

2. 计算坐标:
   使用内积的方式计算向量 (1, 1, 1)^T 在子空间上的坐标。
   坐标 = (v · u) / (u · u),其中 v 是待投影的向量, u 是子空间的基向量。

   坐标 = ((1, 1, 1)^T · (1, 3, 2)^T) / ((1, 3, 2)^T · (1, 3, 2)^T)

3. 计算投影:
   投影 = 坐标 * 子空间的基向量。

4. 计算投影矩阵:
   投影矩阵可以使用子空间的基向量 u 计算,它是一个线性变换矩阵。
   投影矩阵 P = uu^T / (u^T * u)

 代码实现:
import numpy as np

# 定义向量和子空间的基向量
v = np.array([1, 1, 1])
u = np.array([1, 3, 2])

# 计算坐标
coordinate = np.dot(v, u) / np.dot(u, u)

# 计算投影
projection = coordinate * u

# 计算投影矩阵
projection_matrix = np.outer(u, u) / np.dot(u, u)

print("坐标:", coordinate)
print("投影:", projection)
print("投影矩阵:\n", projection_matrix)

7.求向量(6, 0, 0)^T投影到一维子空间span{(1, 1, 2)^T,(0, 1, 2)^T}的坐标、投影、投影矩阵。

求解步骤:

1. 计算子空间的基向量:
   子空间的基向量是 span{(1, 1, 2)^T, (0, 1, 2)^T} 中的两个向量。

2. 计算坐标:
   使用内积的方式计算向量 (6, 0, 0)^T 在子空间上的坐标。坐标是关于子空间中每个基向量的投影。

   坐标1 = (v · u1) / (u1 · u1),其中 v 是待投影的向量, u1 是第一个子空间基向量。
   坐标2 = (v · u2) / (u2 · u2),其中 v 是待投影的向量, u2 是第二个子空间基向量。

3. 计算投影:
   投影是各个坐标乘以相应的基向量,然后相加,形成在子空间上的投影向量。

   投影 = 坐标1 * u1 + 坐标2 * u2

4. 计算投影矩阵:
   投影矩阵可以使用子空间的基向量 u1 和 u2 计算,它是一个线性变换矩阵。
   投影矩阵 P = (u1 * u1^T + u2 * u2^T) / (u1^T * u1 + u2^T * u2)

代码实现:
import numpy as np

# 定义向量和子空间的基向量
v = np.array([6, 0, 0])
u1 = np.array([1, 1, 2])
u2 = np.array([0, 1, 2])

# 计算坐标
coordinate1 = np.dot(v, u1) / np.dot(u1, u1)
coordinate2 = np.dot(v, u2) / np.dot(u2, u2)

# 计算投影
projection = coordinate1 * u1 + coordinate2 * u2

# 计算投影矩阵
projection_matrix = (np.outer(u1, u1) + np.outer(u2, u2)) / (np.dot(u1, u1) + np.dot(u2, u2))

print("坐标1:", coordinate1)
print("坐标2:", coordinate2)
print("投影:", projection)
print("投影矩阵:\n", projection_matrix)

8.利用Gram-Schmidt 正交化求向量组a1 = (-1,2,4)^T,a2=(2,2,0)^T生成子空间的标准正交基。

相关定义:

Gram-Schmidt正交化是一种线性代数中的方法,用于将给定向量组的基向量转化为标准正交基向量或标准正交基的扩展。

一般求解步骤:

1.初始化:给定向量组a1, a2, ..., an。

2.初始化一个正交基向量组q1, q2, ..., qn,开始时可以将q1设置为a1的单位向量,即q1 = a1 / ||a1||。

3.对于每个i(从2到n)执行以下步骤:

        a. 计算投影向量:计算a_i 在前面的正交基向量q1, q2, ..., qi-1 上的投影向量,可以使用内积来计算。 proj = (a_i · q1) * q1 + (a_i · q2) * q2 + ... + (a_i · qi-1) * qi-1

        b. 计算正交向量:将a_i 减去投影向量,得到正交向量。 u_i = a_i - proj

        c. 计算标准正交基向量:将u_i 单位化,得到标准正交基向量。 q_i = u_i / ||u_i||

4.重复步骤3,直到处理完所有的向量a1, a2, ..., an。

求解步骤:

 1. 初始化向量a1和a2。
2. 计算q1,q2。
3. 标准化q1和q2。

实现代码:
import numpy as np

# 定义给定向量组
a1 = np.array([-1, 2, 4])
a2 = np.array([2, 2, 0])

# 步骤1:初始化向量a1和a2
q1 = a1 / np.linalg.norm(a1)

# 步骤2:计算q2
proj_a2_q1 = np.dot(a2, q1) * q1
u2 = a2 - proj_a2_q1

# 步骤3:标准化q2
q2 = u2 / np.linalg.norm(u2)

# 输出标准正交基向量
print("标准正交基向量 q1:", q1)
print("标准正交基向量 q2:", q2)

9.行列式按行按列展开

 介绍

行列式按行(或列)展开是一种用于计算矩阵行列式的方法,通常在计算较小的矩阵时非常有效。让我详细解释一下如何按行展开和按列展开,并举一个示例来说明。

按行展开

1. 选择矩阵的一行(通常是第一行)。

2. 对于该行中的每个元素,将它与其对应的代数余子式相乘,然后交替加减这些结果。代数余子式是去掉当前元素所在行和列后的子矩阵的行列式。

3. 将所有结果相加,得到矩阵的行列式值。

按列展开

1. 选择矩阵的一列(通常是第一列)。

2. 对于该列中的每个元素,将它与其对应的代数余子式相乘,然后交替加减这些结果。

3. 将所有结果相加,得到矩阵的行列式值。

例子

让我们通过一个示例来说明这两种方法。考虑以下3x3矩阵:

按行展开:

选择第一行的元素1,2,3,然后计算对应的代数余子式。

1的代数余子式是去掉第一行和第一列的子矩阵:[[5, 6], [8, 9]],其行列式为 (5 * 9 - 6 * 8) = 9 - 48 = -39。

2的代数余子式是去掉第一行和第二列的子矩阵:[[4, 6], [7, 9]],其行列式为 (4 * 9 - 6 * 7) = 36 - 42 = -6。

3的代数余子式是去掉第一行和第三列的子矩阵:[[4, 5], [7, 8]],其行列式为 (4 * 8 - 5 * 7) = 32 - 35 = -3。

现在,根据交替的加减规则,计算行列式:

按列展开:

选择第一列的元素1,4,7,然后计算对应的代数余子式。

1的代数余子式是去掉第一行和第一列的子矩阵:[[5, 6], [8, 9]],其行列式为 -39(与上面相同)。

4的代数余子式是去掉第二行和第一列的子矩阵:[[2, 3], [8, 9]],其行列式为 (2 * 9 - 3 * 8) = 18 - 24 = -6。

7的代数余子式是去掉第三行和第一列的子矩阵:[[2, 3], [5, 6]],其行列式为 (2 * 6 - 3 * 5) = 12 - 15 = -3。

现在,根据交替的加减规则,计算行列式:

无论是按行展开还是按列展开,最终的行列式值都相同,都等于-36。这就是如何按行和按列展开计算矩阵的行列式。

10.用初等变换法化二次型f1(x_1,x_2,x_3)=x_1 * x_2 + x_1 * x_2 - 3 * x_2 *x_3 为标准形。

求解步骤:

首先,让我们写出给定二次型f1(x_1, x_2, x_3):

我们需要通过适当的初等行变换和初等列变换将这个矩阵化为对角矩阵。首先,我们可以进行初等行变换来消去非对角线上的元素。我们可以将第一行与第二行交换,然后将第一列与第二列交换。这样,我们得到:

现在,这个矩阵已经是对角形式了。这意味着相应的二次型已经被化为标准形。

求解代码:

import numpy as np

# 给定的二次型
Q = np.array([[1, 1, 0], [1, 1, -3], [0, -3, 0]])

# 使用numpy中的线性代数函数来进行初等变换
# 首先,进行行变换,将非对角线元素置零
Q[0], Q[1] = Q[1], Q[0]  # 交换第一行和第二行
Q[:, 0], Q[:, 1] = Q[:, 1], Q[:, 0]  # 交换第一列和第二列

# 打印变换后的矩阵
print("变换后的矩阵:")
print(Q)

# 变换后的矩阵已经是对角形式,对应的标准形为 f(x_1, x_2, x_3) = x_1^2 + x_2^2

11. 用初等变换法化二次型f1(x_1,x_2,x_3)=4 * x_1 * x_2 +2 * x_1 * x_3 - x_2 *x_3 为标准形。

求解步骤:

要用初等变换法将二次型化为标准形,我们可以通过配方法或者配方完成平方的方式来完成。这里我将通过配方法来完成。

给定二次型:

f1(x_1,x_2,x_3)=4 * x_1 * x_2 +2 * x_1 * x_3 - x_2 *x_3

我们先计算一下一次项系数的平方和

然后对原二次型进行配方:

现在我们引入新的变量:

这样我们的二次型就变为:

12.以H2=((1, 1),(1, -1))为有序基底,求向量(3,4)^T在这组基底下的坐标。求向量(3,4)^T经过H2线性变换得到的向量。

解题步骤:

首先,要求向量(3,4)^T在基底H2=((1, 1), (1, -1))下的坐标,我们可以使用线性变换的方法。向量(3,4)^T可以表示为线性组合:

(3, 4)^T = a * (1, 1) + b * (1, -1)

我们要求出a和b的值,这将是向量(3,4)^T在基底H2下的坐标。

通过解线性方程组:

3 = a + b
4 = a - b

我们可以得到:

a = 3, b = 1

因此,向量(3,4)^T在基底H2下的坐标为(3, 1)^T。

接下来,我们要求向量(3,4)^T经过H2线性变换得到的向量。H2是一个线性变换矩阵,可以用来将一个向量变换为另一个向量。H2的定义如下:

H2 = ((1, 1), (1, -1))

要求向量(3,4)^T经过H2线性变换的结果,可以用以下公式:

H2 * (3, 4)^T = ((1, 1), (1, -1)) * (3, 4)^T

进行矩阵乘法:

H2 * (3, 4)^T = (1*3 + 1*4, 1*3 - 1*4)^T
H2 * (3, 4)^T = (7, -1)^T

所以,向量(3,4)^T经过H2线性变换得到的向量为(7, -1)^T。

  • 16
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值