基于Zero123PlusPipeline的多组件融合图像生成管道详解

这段代码定义了一个名为 Zero123PlusPipeline 的类,它继承自 diffusers.StableDiffusionPipeline。这个类实现了一个基于扩散模型的图像生成管道,结合了多个组件如VAE、文本编码器、图像编码器、UNet、调度器等。下面是对每个部分的详细讲解:

类的定义和属性

class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
    tokenizer: transformers.CLIPTokenizer
    text_encoder: transformers.CLIPTextModel
    vision_encoder: transformers.CLIPVisionModelWithProjection

    feature_extractor_clip: transformers.CLIPImageProcessor
    unet: UNet2DConditionModel
    scheduler: diffusers.schedulers.KarrasDiffusionSchedulers

    vae: AutoencoderKL
    ramping: nn.Linear

    feature_extractor_vae: transformers.CLIPImageProcessor

    depth_transforms_multi = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])

这些是类中的属性声明,包括:

  • tokenizer, text_encoder, vision_encoder: 分别为文本编码器和视觉编码器的组件。
  • feature_extractor_clip, feature_extractor_vae: 特征提取器,用于处理输入图像。
  • unet: UNet模型,用于图像生成。
  • scheduler: 调度器,用于控制扩散过程。
  • vae: 变分自编码器(VAE),用于图像编码和解码。
  • ramping: 线性层,用于调整编码特征。
  • depth_transforms_multi: 用于深度图像的预处理转换。

初始化方法

def __init__(
    self,
    vae: AutoencoderKL,
    text_encoder: CLIPTextModel,
    tokenizer: CLIPTokenizer,
    unet: UNet2DConditionModel,
    scheduler: KarrasDiffusionSchedulers,
    vision_encoder: transformers.CLIPVisionModelWithProjection,
    feature_extractor_clip: CLIPImageProcessor, 
    feature_extractor_vae: CLIPImageProcessor,
    ramping_coefficients: Optional[list] = None,
    safety_checker=None,
):
    DiffusionPipeline.__init__(self)

    self.register_modules(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
        unet=unet, scheduler=scheduler, safety_checker=None,
        vision_encoder=vision_encoder,
        feature_extractor_clip=feature_extractor_clip,
        feature_extractor_vae=feature_extractor_vae
    )
    self.register_to_config(ramping_coefficients=ramping_coefficients)
    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
  • 初始化方法接收多个组件作为参数,并调用父类的初始化方法。
  • 使用 register_modules 方法注册这些组件。
  • 计算 vae_scale_factor,用于图像处理。
  • 初始化 image_processor,用于后处理图像。

prepare 方法

def prepare(self):
    train_sched = DDPMScheduler.from_config(self.scheduler.config)
    if isinstance(self.unet, UNet2DConditionModel):
        self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
  • 该方法初始化调度器和UNet模型。
  • 如果UNet是条件模型,则将其转换为只参考噪声的UNet,并设置为评估模式。

add_controlnet 方法

def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
    self.prepare()
    self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
    return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
  • 该方法添加控制网络,并将其集成到UNet模型中。
  • 返回一个包含控制网络的超级网络。

encode_condition_image 方法

def encode_condition_image(self, image: torch.Tensor):
    image = self.vae.encode(image).latent_dist.sample()
    return image
  • 该方法对输入图像进行编码,生成潜在表示。

__call__ 方法

@torch.no_grad()
def __call__(
    self,
    image: Image.Image = None,
    prompt = "",
    *args,
    num_images_per_prompt: Optional[int] = 1,
    guidance_scale=4.0,
    depth_image: Image.Image = None,
    output_type: Optional[str] = "pil",
    width=640,
    height=960,
    num_inference_steps=28,
    return_dict=True,
    **kwargs
):
    self.prepare()
    if image is None:
        raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
    assert not isinstance(image, torch.Tensor)
    image = to_rgb_image(image)
    image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
    image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
    if depth_image is not None and hasattr(self.unet, "controlnet"):
        depth_image = to_rgb_image(depth_image)
        depth_image = self.depth_transforms_multi(depth_image).to(
            device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
        )
    image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
    image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
    cond_lat = self.encode_condition_image(image)
    if guidance_scale > 1:
        negative_lat = self.encode_condition_image(torch.zeros_like(image))
        cond_lat = torch.cat([negative_lat, cond_lat])
    encoded = self.vision_encoder(image_2, output_hidden_states=False)
    global_embeds = encoded.image_embeds
    global_embeds = global_embeds.unsqueeze(-2)
    
    if hasattr(self, "encode_prompt"):
        encoder_hidden_states = self.encode_prompt(
            prompt,
            self.device,
            num_images_per_prompt,
            False
        )[0]
    else:
        encoder_hidden_states = self._encode_prompt(
            prompt,
            self.device,
            num_images_per_prompt,
            False
        )
    ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
    encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
    cak = dict(cond_lat=cond_lat)
    if hasattr(self.unet, "controlnet"):
        cak['control_depth'] = depth_image
    latents: torch.Tensor = super().__call__(
        None,
        *args,
        cross_attention_kwargs=cak,
        guidance_scale=guidance_scale,
        num_images_per_prompt=num_images_per_prompt,
        prompt_embeds=encoder_hidden_states,
        num_inference_steps=num_inference_steps,
        output_type='latent',
        width=width,
        height=height,
        **kwargs
    ).images
    latents = unscale_latents(latents)
    if not output_type == "latent":
        image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
    else:
        image = latents

    image = self.image_processor.postprocess(image, output_type=output_type)
    if not return_dict:
        return (image,)

    return ImagePipelineOutput(images=image)

这是主要的图像生成方法,包含以下步骤:

  1. 准备模型。
  2. 检查输入图像是否为空,并将其转换为RGB格式。
  3. 使用特征提取器处理图像,生成两种格式的图像特征。
  4. 如果有深度图像,进行处理。
  5. 将图像转换为设备和数据类型相匹配的格式。
  6. 对图像进行编码,生成潜在表示。
  7. 根据 guidance_scale 决定是否进行引导。
  8. 使用视觉编码器对图像特征进行编码。
  9. 处理文本提示,生成编码隐藏状态。
  10. 调整编码隐藏状态,结合全局嵌入。
  11. 设置条件,调用父类的 __call__ 方法进行扩散生成。
  12. 对生成的潜在表示进行后处理,解码生成最终图像。
  13. 返回生成的图像。

总结

这个类实现了一个复杂的图像生成管道,结合了多种技术和模型,包括VAE、CLIP编码器、UNet和调度器。通过这种组合,能够在输入图像和文本提示的基础上生成高质量的图像。

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的基于深度学习的遥感图像融合的代码示例,使用的深度学习框架为PyTorch: ```python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.transforms import ToTensor from torchvision.datasets import ImageFolder class FusionNet(nn.Module): def __init__(self): super(FusionNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 64, 3, padding=1) self.conv3 = nn.Conv2d(64, 64, 3, padding=1) self.conv4 = nn.Conv2d(64, 64, 3, padding=1) self.conv5 = nn.Conv2d(64, 64, 3, padding=1) self.conv6 = nn.Conv2d(64, 64, 3, padding=1) self.conv7 = nn.Conv2d(64, 3, 3, padding=1) self.relu = nn.ReLU() def forward(self, x): x1 = self.relu(self.conv1(x)) x2 = self.relu(self.conv2(x1)) x3 = self.relu(self.conv3(x1 + x2)) x4 = self.relu(self.conv4(x1 + x2 + x3)) x5 = self.relu(self.conv5(x1 + x2 + x3 + x4)) x6 = self.relu(self.conv6(x1 + x2 + x3 + x4 + x5)) x7 = self.conv7(x6) return x7 + x # 加载数据集 dataset = ImageFolder(root='path/to/dataset', transform=ToTensor()) dataloader = DataLoader(dataset, batch_size=32, shuffle=True) # 定义模型和优化器 model = FusionNet() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.01) # 训练模型 for epoch in range(10): running_loss = 0.0 for data in dataloader: inputs, _ = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, inputs) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(dataset))) # 保存模型 torch.save(model.state_dict(), 'path/to/model.pth') ``` 这个代码示例使用的是一个简单的卷积神经网络进行遥感图像融合。具体来说,该模型将原始图像作为输入,并在其中添加一个分支,以便模型可以学习如何将两个不同波段的图像融合。最后输出的图像应该是更清晰的、更丰富的图像。在训练模型时,使用均方误差作为损失函数,并使用Adam优化器进行优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值