Tips on Reading Mathematics Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does the proof use the hypothesis?—Paul R. Halmos, [44]
• Be an active reader. Open to the page you need to read, get out some paper and a pencil.
• If notation is defined, make sure you know what it means. Your pencil and paper should come in handy here.
• Look up the definitions of all words that you do not understand.
• Read the statement of the theorem, corollary, lemma, or example. Can you work through the details of the proof by yourself? Try. Even if it feels like you are making no progress, you are gaining a better understanding of what you need to do.
• Once you truly understand the statement of what is to be proven, you may still have trouble reading the proof—even someone’s well-written, clear, concise proof. Try to get the overall idea of what the author is doing, and then try (again) to prove it yourself.
• If a theorem is quoted in a proof and you don’t know what it is, look it up. Check that the hypotheses apply, and that the conclusion is what the author claims it is.
• Don’t expect to go quickly. You need to get the overall idea as well as the details. This takes time.
• If you are reading a fairly long proof, try doing it in bits.
• If you can’t figure out what the author is doing, try to (if appropriate) choose a more specific case and work through the argument for that specific case. • Draw a picture, if appropriate.
• If you really can’t get it, do what comes naturally—put the book down and come back to it later. You might want to take this time to read similar proofs or some examples.
• After reading a theorem, see if you can restate it. Make sure you know what the theorem says, what it applies to, and what it does not apply to.
• After you read the proof, try to outline the technique and main idea the author used. Try to explain it to a willing listener. If you can’t do this without looking back at the proof, you probably didn’t fully understand the proof. Read it again.
• Can you prove anything else using a similar proof? Does the proof remind you of something else? What are the limits of this proof? This theorem?
• If your teacher is following a book, read over the proofs before you go to class. You’ll be glad you did.
As we proceed, you will have plenty of opportunities to try these tips out and find some others of your own.
---------
转载自Reading,Writing and Proving,A Closer Look at Mathematics----Ulrich Daepp • Pamela Gorkin