3D Gaussian Splatting环境配置——尤其是submodules/diff-gaussian-rasterization(windows)

最近在研究3D Gaussian Splatting for Real-Time Radiance Field Rendering这篇论文和代码复现,在配置环境的过程中遇到了巨大阻碍,尝试了github、CSDN上的各种办法,花两天解决环境配置问题。

觉得很有必要记录和对网络上的问题进行补充

个人环境配置方式:

个人电脑:

GPU:NVIDIA GeForce RTX 4060 Laptop GPU

CPU:i9-13900HX

Windows10

32GB RAM
x64 system

软件配置:

1、CUDA11.7

验证一下:

nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Tue_May__3_19:00:59_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.7, V11.7.64
Build cuda_11.7.r11.7/compiler.31294372_0

CUDA似乎下载其他版本也可以,官方文档提到的是CUDA11.6和11.8,.yml文件里面是11.6,网上也有12+版本成功的例子,注意后面的pytorch等版本一定要相互支持即可

2、VS2019

Visual Studio2019:重要组件包括 MSVCv142 - VS 2019作为编译,并将其添加的系统环境变量

以我的为例:

C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133\bin\Hostx64\x64

经过多次尝试,下载了最新的Visual Studio 2022后,可能是编译器版本问题不支持,我多次尝试都失败了,这也是我个人当时解决的难点

Github上有说VS2022 v17.10.3 失败, v17.6.4 可以正常运行

最终我还是回溯了早期版本的2019

下面为VS2019版本链接

VisualStudio2019社区版离线下载资源:Visual Studio 2019 社区版离线下载资源本仓库提供了一个名为 `vs_Community-2019.zip` 的资源文件,该文件包含了 Visual Studio 2019 社区版的离线下载内容 - GitCode

3、GIT
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive

4、手动新建并配置环境

不要直接采用官方文档的

conda env create --file environment.yml

很容易出问题,而且不好查错

下面的命令依次执行:

conda create -n gaussian_splatting python=3.7
conda activate gaussian_splatting
conda install -c conda-forge vs2019_win-64
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117 
pip install submodules/diff-gaussian-rasterization
pip install submodules/simple-knn
pip install submodules/fused-ssim

注意torch、torchvision、torchaudio要符合CUDA版本

conda install -c conda-forge vs2019_win-64保证MSCV工具环境配置和运行,若2022则vs2022_win-64

如果submodules/diff-gaussian-rasterization安装成功基本上就没有太大问题了

后面再安装

pip install plyfile
pip install tqdm
pip install opencv-python
pip install joblib
结束

搬运下hub上非常有帮助意义的帖子给大家作另外参考

Failed building wheel for diff_gaussian_rasterization · Issue #865 · graphdeco-inria/gaussian-splatting · GitHub

希望大家研究顺利

### 如何通过 pip 安装 `requirements.txt` 中的依赖以及指定子模块 #### 使用 `pip` 安装 `requirements.txt` 的方法 可以通过运行以下命令一次性安装 `requirements.txt` 文件中的所有依赖项: ```bash pip install -r requirements.txt ``` 这会读取文件并自动解析其中列出的所有 Python 包及其版本号[^1]。 #### 子模块安装的具体处理方式 对于特定子模块如 `submodules/diff-gaussian-rasterization` 或者 `submodules/simple-knn`,如果直接使用 `pip` 命令无法成功安装,则可以尝试手动克隆仓库并按照官方文档说明完成本地构建和安装。例如: ##### 对于 `diff-gaussian-rasterization` 该库可能需要额外的编译支持才能正常工作。以下是推荐的操作流程: - **Linux 平台** 需要先确认已安装必要的开发工具链,比如 GCC 编译器及相关组件。可以在终端执行如下命令以确保环境准备就绪: ```bash sudo apt-get update && sudo apt-get install build-essential cmake python3-dev ``` 这些工具能够帮助顺利完成 C++ 扩展部分的编译过程[^3]。 - **Windows 平台** 如果是在 Windows 下遇到问题,建议查看 GitHub Issues 页面是否有针对操作系统的具体解决方案。通常情况下,这类问题涉及 Visual Studio 构建工具配置不当或缺少某些依赖动态链接库 (DLL)[^4]。 - 接下来可以直接从源码安装此项目: ```bash git clone https://github.com/graphdeco-inria/diff-gaussian-rasterization.git cd diff-gaussian-rasterization pip install . ``` ##### 关于 `simple-knn` 同样地,当常规途径失效时可考虑采用 Git URL 方式代替默认路径定义形式来进行远程拉取与部署: ```bash git clone https://github.com/your-repo-url/simple-knn.git cd simple-knn pip install . ``` 另外值得注意的是,有时即使上述步骤都已完成仍可能出现元数据生成方面的异常提示(`Encountered error while generating package metadata`),此时需仔细核对日志信息定位确切原因再做调整[^5]。 --- ### 提供一段示例代码用于验证安装情况 下面给出了一段简单的测试脚本用来检查两个目标库是否加载无误: ```python try: import diff_gaussian_rasterization as dgr print("diff-gaussian-rasterization is successfully installed.") except ImportError: print("Failed to load diff-gaussian-rasterization.") try: import simple_knn print("simple-knn is successfully installed.") except ImportError: print("Failed to load simple-knn.") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值