(三维重建学习)3D Gaussian Splatting & Instant-NGP环境配置

本文介绍了3DGaussianSplatting与Instant-NGP的环境配置与应用,包括CUDA/CUDANN安装、依赖安装、目录结构搭建、可视化工具使用及实例操作。详细指导读者完成从环境搭建到模型渲染的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习参考:

如果你已经熟悉了流程只是记不住命令:


# 3Dgaussian-splatting
FFMPEG -i D:\Projects\Nerf\gaussian-splatting\data\data_classroom\classroom.mov -qscale:v 1 -qmin 1 -vf fps=8 %04d.jpg

python convert.py -s data/data_classroom

python train.py -s data/data_classroom -m data/data_classroom/output 

cd viewers\bin

SIBR_gaussianViewer_app -m data/data_classroom/output




# instant-ngp
python scripts\colmap2nerf.py --video_in data\data_classroom\classroom.mp4 --run_colmap --colmap_db data\data_classroom\colmap.db --text data\data_classroom\text_colmap   --aabb_scale 16 --out data\data_classroom\transforms.json  --colmap_matcher exhaustive  --video_fps 8

instant-ngp.exe --scene data\data_classroom\transforms.json 

一、3D Gaussian Splatting

(一)3D Gaussian Splatting环境配置

1.环境需要

我在conda环境中使用的是python3.8,cuda用的是11.8版本,cudann用的是8.9.6.50。

(1)CUDA和CUDANN安装提示:
  • 在下面这个教程中,作者提到不要勾选Visual Studio Integration,但是我第一次下的时候没有勾选就一直说nvcc不是内部指令。
  • 在CUDA安装好后,我的是自动添加了环境变量,没有的建议“刷新”一下。在这里插入图片描述

教程:安装CUDA和CudaNN

(2)安装依赖:

在虚拟环境里:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

pip install plyfile tqdm

pip install submodules/diff-gaussian-rasterization

pip install submodules/simple-knn  

如果这里后面两个命令报错了,我的解决方法是重新拉取整个项目加上 --recursive

git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive  
(3)接下来就跟着教程走
(4)执行完之后的目录结构如下:在这里插入图片描述
(5)可视化工具执行后效果如下:

在这里插入图片描述

一、Instant-NGP

(一)Instant-NGP环境配置

-三维重建instant-ngp环境部署与colmap、ffmpeg的脚本参数使用

跟着上面两个参考走,下面记录几点不一样的地方:

1.使用instent-ngp

视频放在此处:
在这里插入图片描述

执行以下命令生成用于三维重建的images和transforms.json等文件:

python scripts\colmap2nerf.py --video_in data\data_laptop\laptop.mp4 --run_colmap --colmap_db data\data_laptop\colmap.db --text data\data_laptop\text_colmap   --aabb_scale 16 --out data\data_laptop\transforms.json  --colmap_matcher exhaustive  --video_fps 10

在这里插入图片描述

命令参数解释:
在这里插入图片描述
执行后的目录结构如下:
在这里插入图片描述

运行instent-ngp:

instant-ngp.exe --scene data\data_laptop\transforms.json

但是运行的时候报错了: ERROR Uncaught exception: No training images were found for NeRF training!
在这里插入图片描述
我对比了一下官方fox文件夹里给的transforms.json写的图片路径,发现,我保存的路径有问题(但我还不知道是哪段代码导致存储的是这个路径)
在这里插入图片描述
所以将我的transforms.json写的图片路径改成和官方示例一样:
在这里插入图片描述
再次执行,成功。结果如下:
在这里插入图片描述

### 实现 3D Gaussian Splatting 的准备工作 为了在 Ubuntu 上成功实现 3D Gaussian Splatting (3DGS),需要确保操作系统环境已经准备好并安装必要的依赖项。对于 Ubuntu 22.04 版本,建议按照以下指南操作。 #### 安装基础软件包 首先更新系统的软件源列表,并安装一些基本工具和库: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git wget unzip pkg-config libopencv-dev python3-pip -y ``` #### 设置 Python 和 PyTorch 环境 由于 3D Gaussian Splatting 需要使用到 PyTorch 进行模型训练与推理,因此需先确认 CUDA 版本再选择合适的 PyTorch 版本来安装[^1]。可以通过命令 `nvcc --version` 来查看当前 GPU 所支持的 CUDA 版本号。接着通过 pip 工具来安装对应版本的 PyTorch 及其扩展组件 torchvision: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 这里假设使用的 CUDA 是 11.7 版本;如果不是,则应调整 URL 中 cu 后面的部分以匹配实际的 CUDA 版本。 #### 获取项目代码 从 GitHub 下载官方提供的 3D Gaussian Splatting 源码仓库: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting.git cd gaussian-splatting ``` #### 编译 C++ 组件 进入克隆下来的目录后,编译所需的 C++ 插件模块: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` 这一步骤会生成执行文件和其他必需的支持文件。 #### 准备数据集 如果打算测试自采集的数据集,在此之前还需要做额外的工作来处理这些原始图像序列或者点云数据,使其能够被算法所接受。具体方法可以参见相关文档说明[^3]。 #### 测试运行 最后,尝试启动示例程序验证整个流程是否正常工作: ```bash python3 main.py --config configs/example.yaml ``` 以上就是在 Ubuntu 平台上部署 3D Gaussian Splatting 技术的大致过程概述。需要注意的是,不同硬件配置可能会遇到不同的兼容性和性能优化问题,所以在实践中可能还需进一步调试参数设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值