写在前面
本笔记以贾铮老师的《电化学测量方法》为模板,结合作业题,梳理每一章节的核心内容,目的是针对可能的考试内容进行复习。复习的要点如下:
-
用的什么电测方法,这个方法能测哪些参数,怎么测的,测量的条件是什么,(优势和不足)
-
尽量围绕考点,只用记住几个核心的公式。
-
推导是帮助理解的,考试忽略具体的推导过程。不要纠结于繁琐的数学变换技巧,重点看第1条。
-
只追求考试的话,重点看
结论
部分和下划线部分就可以了,总结了每一章的可能性较大的考点
先以考试为主,如若追求知识体系的完整性,细节部分会在以后有空余时间的时候补上,再看不迟。
第1章|电流阶跃暂态测量
结论
电化学测量(以下简称电测)的基本原则:
当进行电测以研究某一基本过程时,要控制实验条件,突出主要矛盾,是该过程在电极总过程中占主导地位,降低或消除其他基本过程的影响。通过研究总过程研究这一基本过程
电测的三个步骤:
实验条件的控制,实验结果的测量和实验结果的解析
第2章|电化学体系的数学描述
略
第3章|电化学测量实验的基本知识
结论
列出4种常见的参比电极,并说明4种参比电极分别适用的电化学体系
- 可逆氢电极 P t , H 2 ∣ H + Pt, H_2|H+ Pt,H2∣H+, 适用大部分电化学体系
- 甘汞电极 H g ∣ H g 2 C l 2 ( 固 ) ∣ C l − Hg|Hg_2Cl_2(固)|Cl^- Hg∣Hg2Cl2(固)∣Cl−,适用大部分电化学体系
- 汞-氧化汞电极 H g ∣ H g O ( 固 ) ∣ O H − Hg|HgO(固)|OH^- Hg∣HgO(固)∣OH−,碱性溶液体系
- 汞-硫酸亚汞电极 H g ∣ H g S O 4 ( 固 ) ∣ S O 4 2 − Hg|HgSO_4(固)|SO_4^{2-} Hg∣HgSO4(固)∣SO42−,硫酸溶液体系
画图说明“三极两路”(三电极两回路),采用两回路测量的原因是什么
第4章|稳态测量方法
简要介绍稳态和暂态过程的特点:特点+定义
稳态过程定义:一定时间范围内,电化学系统的参量(电极电势,电流密度,界面附近粒子浓度,电极界面状态)变化甚微或基本不变 的状态
稳态特点:
- 不存在双层充放电电流,所有电流用于电化学反应,极化电流密度对应电化学反应速率
- 电极界面扩散层不在发展,扩散层厚度 δ \delta δ恒定,层内浓度只是空间的函数,而与时间无关
暂态过程定义:极化条件改变时,从一个稳态向另一个稳态转变,期间所经历的不稳定的,电化学参数显著改变的状态
暂态特点:
- 存在双层充放电电流 i c i_c ic
- 扩散层内粒子浓度不仅是空间位置的函数,也是时间的函数
稳态与平衡态的区别:
平衡态是稳态的一种特殊情况
以 Z n 2 + / Z n Zn^{2+}/Zn Zn2+/Zn电极的阳极溶解为例,稳态溶解是,正逆反应速率相差一个稳定的常数值,表现为稳定的阳极电流,此时传质速率恰好等于溶解速率,界面区 Z n 2 + Zn^{2+} Zn2+离子浓度分布维持不变,表现为电流电势均不变。
平衡态是指正逆反应速率相等,总反应速率为0,总电流为0,此时的电位是平衡电位 ϕ e \phi_e ϕe
稳态扩散电流(密度)要记住
稳态扩散
δ
=
c
o
n
s
t
,
i
=
n
F
A
D
o
(
d
C
o
d
x
)
x
=
0
=
n
F
A
D
o
C
o
∗
−
C
o
S
δ
\begin{align} \delta &= const, \\ i &= nFAD_o(\frac{dCo}{dx})_{x=0} \\ &=nFADo \frac{Co^*-Co^S}{\delta } \end{align}
δi=const,=nFADo(dxdCo)x=0=nFADoδCo∗−CoS
极限扩散
C
o
S
=
0
,
i
d
=
n
F
A
D
o
C
o
∗
δ
Co^S=0, i_d = nFADo \frac{Co^*}{\delta}
CoS=0,id=nFADoδCo∗
比较 i Θ 和 i d i^\Theta和i_d iΘ和id的关系,判断传荷过程和传质过程快慢:
引理:B-V公式,这里暂且照抄,后期统一成《电化学原理》课堂上讲的熟悉的符号
i
=
i
Θ
[
e
x
p
(
−
α
n
F
R
T
η
)
−
e
x
p
(
β
n
F
R
T
η
)
]
i = i^{\Theta}[exp(-\frac{\alpha nF}{RT}\eta) - exp(\frac{\beta nF}{RT}\eta)]
i=iΘ[exp(−RTαnFη)−exp(RTβnFη)]
这里只考虑了电化学极化,如果引入浓差极化对表面离子浓度进行修正:
i
=
i
Θ
[
(
1
−
i
i
d
O
)
e
x
p
(
−
α
n
F
R
T
η
)
−
(
1
−
i
i
d
R
)
e
x
p
(
β
n
F
R
T
η
)
]
i
Θ
=
n
F
A
k
Θ
C
,
k
Θ
为标准反应速率常数
i
d
=
n
F
A
D
o
C
o
∗
δ
i = i^{\Theta}[(1-\frac{i}{i_{dO}})exp(-\frac{\alpha nF}{RT}\eta) - (1-\frac{i}{i_{dR}})exp(\frac{\beta nF}{RT}\eta)] \\ i^\Theta = nFAk^\Theta C, k^\Theta 为标准反应速率常数 \\ i_d = nFADo \frac{Co^*}{\delta} \\
i=iΘ[(1−idOi)exp(−RTαnFη)−(1−idRi)exp(RTβnFη)]iΘ=nFAkΘC,kΘ为标准反应速率常数id=nFADoδCo∗
可得:
i
Θ
:
i
d
=
k
Θ
δ
D
=
k
Θ
m
,
m
=
D
δ
i^\Theta:i_d = \frac{k^\Theta \delta}{D} = \frac{k\Theta}{m}, m = \frac{D}{\delta}
iΘ:id=DkΘδ=mkΘ,m=δD
所以:
- 当 i Θ : i d > > 1 i^\Theta: id >> 1 iΘ:id>>1时,即 k Θ > > m k^\Theta >> m kΘ>>m时,(容易接近极限扩散电流)浓差极化更容易出现,电极表现为可逆体系,平衡不容易被打破。所以稳态极化曲线不适合研究
- 反之,电化学极化更容易出现,电极容易处于不可逆状态,这样的电极在不同的超电势范围内表现不同极化程度,此时又分两种情况
- − η > R T α n F -\eta > \frac{RT}{\alpha nF} −η>αnFRT时,完全不可逆,退化为公式Tafel曲线,以阴极极化为例, − η = − 2.3 R T α n F l g i Θ + 2.3 R T α n F l g i -\eta = -\frac{2.3RT}{\alpha nF} lgi^\Theta + \frac{2.3RT}{\alpha nF}lgi −η=−αnF2.3RTlgiΘ+αnF2.3RTlgi
- − η < < R T α F -\eta << \frac{RT}{\alpha F} −η<<αFRT时,电势接近平衡电势,退化为线性公式 R p = − η i = R T n F 1 i Θ R_p = \frac{-\eta}{i} = \frac{RT}{nF} \frac{1}{i^\Theta} Rp=i−η=nFRTiΘ1
测量**交换电流密度**的三种方法:
测什么:交换电流密度 i 0 i_0 i0( i Θ i^{\Theta} iΘ,两本书符号不同,习惯用于前者)
用的什么方法:稳态极化曲线(包括恒电流法和恒电势法,可以通过旋转圆盘电极降低或消除浓差极化的影响),保证函数关系即可
补上相应的仪器,作业要求画图,考试怎么考还不知道
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
怎么测:利用上述推导,得到三种相应的方法,要求重点掌握
前提:不存在浓差极化(控制实验条件)
强极化区,过电位与电流满足Tafel曲线关系,以阴极极化为例
−
η
=
−
2.3
R
T
α
n
F
l
g
i
Θ
+
2.3
R
T
α
n
F
l
g
i
-\eta = -\frac{2.3RT}{\alpha nF} lgi^\Theta + \frac{2.3RT}{\alpha nF}lgi
−η=−αnF2.3RTlgiΘ+αnF2.3RTlgi
所以用
η
\eta
η对
l
g
i
lgi
lgi作图,利用测的斜率和截距可以交换电流求
i
Θ
i^\Theta
iΘ
线性极化区,过电位与电流满足线性关系
R
p
=
−
η
i
=
R
T
n
F
1
i
Θ
R_p = \frac{-\eta}{i} = \frac{RT}{nF} \frac{1}{i^\Theta}
Rp=i−η=nFRTiΘ1
利用斜率测得
i
Θ
=
R
T
n
F
1
R
p
i^\Theta = \frac{RT}{nF} \frac{1}{R_p}
iΘ=nFRTRp1
不强不弱区(书中定义为弱极化区)
B-V公式没办法化简,曲线形状复杂,书中给出的办法是通过数学变化,变为可以直线作图的形式,其实就相当于已知一系列 η − i \eta - i η−i的点,拟合出一条直线,对应B-V公式中的系数。
回答就写:利用三点法,通过图形斜率取得 i Θ , α n 和 β n i^\Theta, \alpha n 和 \beta n iΘ,αn和βn
第5章|暂态测量方法总论
暂态和稳态的不同点???
作业被扣了3分,有人知道答案能分享一下吗555
暂态法的特点:
- 能测 R c t R_{ct} Rct,由 R c t R_ct Rct进而计算 i Θ , k Θ i^ \Theta, k^ \Theta iΘ,kΘ,但前提是选择足够小的极化幅值和合适的极化时间
- 能同时测量双层电容 C d C_d Cd和溶液电阻 R u R_u Ru
- 研究快速电化学反应,通过缩短极化时间降低浓差极化的影响。这样即使测量时间 t < 1 0 − 5 t<10^{-5} t<10−5,暂态测量电流密度也高达每平方厘米几十安培,不至于影响快速电化学反应的研究
- 有疑虑研究表面状态更新快的体系
- 有利于研究电极表面吸脱附和电极界面结构。测量时间短,液相杂质离子不至于扩散到电极表面
注意,教材P67最后一段有对电化学极化和浓差极化原理的解释,对理解很有帮助,建议反复阅读
等效电路
先记住总的,具有四个电极基本过程的简单电极过程的等效电路:
C d : 双层充电过程 R c t : 电荷传递过程 R u : 离子导电过程 Z w : 扩散传质过程 C_d:双层充电过程 \\ R_{ct}:电荷传递过程 \\ R_u:离子导电过程 \\ Z_w:扩散传质过程 \\ Cd:双层充电过程Rct:电荷传递过程Ru:离子导电过程Zw:扩散传质过程
电荷传递电阻的定义?(回答数学表达式)
R
c
t
=
−
d
η
e
d
i
f
=
−
(
∂
η
∂
i
f
)
C
R_{ct} = -\frac{d \eta_e}{di_f} = -( \frac{\partial \eta}{\partial i_f})_C
Rct=−difdηe=−(∂if∂η)C
测定方法?
属于传荷过程电化学极化的参数,在第4章稳态讲过,回答记得补上公式:
平衡电势附近线性极化区:
R
c
t
=
R
T
n
F
1
i
Θ
强极化区,
T
a
f
e
l
,
以阴极为例:
R
c
t
=
R
T
α
n
F
1
i
f
平衡电势附近线性极化区:R_{ct} = \frac{RT}{nF} \frac{1}{i^\Theta} \\ 强极化区,Tafel, 以阴极为例: R_{ct} = \frac{RT}{\alpha nF} \frac{1}{i_f}
平衡电势附近线性极化区:Rct=nFRTiΘ1强极化区,Tafel,以阴极为例:Rct=αnFRTif1
第6章|电流阶跃暂态测量
写在前面:
电流阶跃和电势阶跃是一个对称的过程,理解好一个也就容易理解另一个。核心思路如下:
将四个电化学基本步骤用第5章提到的等效电路元件表示后,再通过输入和响应进行参数辨识,拿到各个电路元件的参数值,进一步得到动力学参数
通过施加不同的输入,就对应不同的测量方法,然后再解析响应信号,就完成测量的过程
传荷控制下小幅度电流阶跃暂态测量
条件:小幅度电流阶跃信号,单向极化持续时间较短,浓差极化忽略。
单电流阶跃法
重点考察对曲线每个过程的理解(要会不看书画图,要会回答过程)
请画出控制电流阶跃暂态测量时,施加大幅电流阶跃信号后的电势-时间响应曲线的形状,并简要说明形成此类响应曲线形状的原因:
- AB:电流突越瞬间(t=0),欧姆电流有电流跟随性,导致t=0时刻电势突跃,引起突跃的主要原因是欧姆电阻极化
- BC:电荷传递迟缓引起双层充电,…电化学极化
- CD:液相传质迟缓引起表面反应物粒子浓度下降,产物粒子浓度上升,浓差极化开始出现,且随着时间又表面想溶液本体深处发展,…浓差极化
- DE:随着电极反应进行,表面反应物粒子浓度不断下降,达到完全浓差极化,电极界面上电荷分布状态会在恒电流驱使下改变,电势突跃,直到下一个传荷过程发生
等效电路图如下:
以下是对电流阶跃法测量结果的两种解析方法,是帮助理解的,考试可能不太会考。
(1)极限简化法
分析过程见原文,有助于理解;重点讨论对等效电路进行分析,简化分析过程,结论也更容易记忆。
控制电流阶跃暂态法的
η
−
t
\eta-t
η−t曲线理论方程为:
η
=
η
e
∞
(
1
−
e
−
t
τ
C
)
\eta = \eta_{e^{\infty}}(1-e^{-\frac{t}{\tau_C}})
η=ηe∞(1−e−τCt)
等效电路为简单的一阶响应模型,电流阶跃等价于在电路两端接上电压源,采用三要素法对电容两端电压(暂且用 u ( t ) u(t) u(t)表示。注意,不是整个电路)进行分析即可,推导过程如下:
(2)方程解析法
极限简化法的缺点
极限简化法测量 R c t R_{ct} Rct是,需要经过远大于电极时间常数的时间后,测量无浓差极化的稳态超电势。这对于时间常数比较小的电极体系容易做到,但对于时间常数大的体系,达到稳态需要相当长的时间,容易收到浓差极化和平衡电势漂移的影响。浓差极化会使 ∣ η ∞ ∣ |\eta_{\infty}| ∣η∞∣高于 i ( R u + R c t ) i(R_u + R_{ct}) i(Ru+Rct),并且很难达到稳态值,难以测定 R c t R_{ct} Rct,因此需要借助方程解析法。
方程解析法不必测出稳态超电势,只需利用 η − t \eta-t η−t曲线的暂态部分,测量时间较短,避免浓差极化干扰
l
n
∣
η
∞
−
η
∣
=
l
n
∣
η
e
∞
∣
−
t
τ
C
ln|\eta_{\infty} - \eta |= ln|\eta_{e^{\infty}}| - \frac{t}{\tau_C}
ln∣η∞−η∣=ln∣ηe∞∣−τCt
不断尝试
η
∞
\eta_{\infty}
η∞的值(试选法),直到图像接近直线。
由截距 l n ∣ η ∞ − η ∣ ln|\eta_\infty - \eta| ln∣η∞−η∣ 求得 R c t R_{ct} Rct和 R u R_u Ru,由斜率 − 1 τ C -\frac{1}{\tau_C} −τC1求出 C d C_d Cd
结论
t
=
0
电势突跃
,
溶液电阻:
R
u
=
(
−
η
R
)
i
t
<
<
τ
C
双层充电,双层电容:
C
d
=
−
i
(
d
η
d
t
)
t
=
0
t
=
(
3
−
5
)
τ
C
,双层充电结束,只有
R
u
和
R
c
t
,
R
c
t
=
−
η
∞
i
−
R
u
→
i
Θ
t = 0电势突跃, 溶液电阻:R_u = \frac{(-\eta _R)}{i} \\ t << \tau_C双层充电, 双层电容:C_d = - \frac{i}{(\frac{d \eta}{dt})_{t=0}} \\ t = (3-5)\tau_C,双层充电结束,只有R_u和R_{ct},R_{ct} = \frac{- \eta_\infty}{i} - R_u → i^\Theta
t=0电势突跃,溶液电阻:Ru=i(−ηR)t<<τC双层充电,双层电容:Cd=−(dtdη)t=0it=(3−5)τC,双层充电结束,只有Ru和Rct,Rct=i−η∞−Ru→iΘ
如何定义时间常数?用哪个数学符号表示?
电测中,控制电流的暂态测量时, τ C = R c t C d \tau_C = R_{ct}C_d τC=RctCd;控制电势的暂态测量时, τ C = R / / C d \tau_C = R_{//}C_d τC=R//Cd
要求电极时间常数要大,解释原因?
τ C \tau _C τC较大时,暂态过程持续时间长, η − t \eta - t η−t曲线最初接近于一条直线,斜率 ( d η d t ) t = 0 (\frac{d \eta}{dt})_{t=0} (dtdη)t=0;较小时,迅速弯曲,不易测量斜率。因此,要求测量时选择适当的溶液组成和电势范围,是电极接近理想极化状态, R c t → ∞ , τ C = R c t C d → ∞ \R_{ct}→ \infty, \tau_C = R_{ct}C_d → \infty Rct→∞,τC=RctCd→∞, 没有电化学反应发生,易于准确测量
断电流法
结论:
t = 0 电势突跃 , 溶液电阻: R u = ( − η R ) i t < < τ C 双层来不及放电???,电化学极化: R c t = − η t = 0 i t = ( 3 − 5 ) τ C ,双层通过 R c t 放电, C d = i ( d η d t ) t = 0 t = 0电势突跃, 溶液电阻:R_u = \frac{(-\eta _R)}{i} \\ t << \tau_C双层来不及放电???,电化学极化:R_{ct} = \frac{- \eta_{t=0}}{i}\\ t = (3-5)\tau_C,双层通过R_{ct}放电,C_d = \frac{i}{(\frac{d \eta}{dt})_{t=0}}\\ t=0电势突跃,溶液电阻:Ru=i(−ηR)t<<τC双层来不及放电???,电化学极化:Rct=i−ηt=0t=(3−5)τC,双层通过Rct放电,Cd=(dtdη)t=0i
断电流法注意事项:
- i值较小,到达稳态时超电势小于10mv
- 断点前极化时间短,保证没有浓差极化出现
- i极化时间足够长,使反应达到稳态
- 断点速度足够快,否则不能准确测量 η R , η e ∞ \eta _R, \eta_{e^\infty} ηR,ηe∞
双脉冲法
略
多孔电极
控制电流阶跃法不适用与测量多孔电极的 C d C_d Cd?
多孔电极每个孔道中都可发生电化学反应,多个孔道并联,表面各处阻抗分布不均匀。采用控制电流阶跃法测 C d C_d Cd,需要使用 t < < τ C t<<\tau_C t<<τC的曲线斜率,如果某一孔道的溶液电阻 R 2 ′ R2' R2′较大,电流走捷径,流经 C 2 C_2 C2的电流很小,导致这一电容充电不充分,使得测量等效电容偏小。
应该采用控制电势阶跃法,不用要求 t < < τ C t<<\tau_C t<<τC
Nyquist图,应该只写第一行,交代一下 σ ′ \sigma' σ′就行
扩散电流:
i
=
−
n
F
D
C
o
∗
π
D
t
i = -nFD \frac{Co^*}{\sqrt{\pi Dt}}
i=−nFDπDtCo∗
浓差极化存在时的控制电流阶跃暂态测量方法
注意:上面讲到的方法都明确要求控制条件(如小幅波)等降低或消除浓差极化的影响,本小节考虑浓差极化。
这里对思路进行总结,便于理解教材P88-92
一旦涉及到浓差极化,就是要对Fick的1,2定律导出的偏微分方程进行求解,Laplace变换都是一致的,求解的关键在于定解条件的确定。定解条件如下:
定解条件的关键在于第3条,极化条件。这里对应着三个过程:可逆、完全不可逆和准可逆,此方法将后两者合并在一起考虑
过程 | 定解条件 |
---|---|
可逆 | Nernst方程 |
完全不可逆&准可逆 | Faradayd电流动力学表达式用泰勒展开线性化 |
结论:
重点关注一下Sand-equation: