《电化学测量方法》教材解读&复习建议(下)

电测复习(下)

控制电流阶跃研究电极表面覆盖层?

不太确定,见教材P93

吸附层表面覆盖度计算公式 θ = Q θ n q N A \theta = \frac{Q_\theta}{nqNA} θ=nqNAQθ

成相层厚度: δ = Q θ M n F ρ \delta = \frac{Q_\theta M}{nF \rho } δ=nQθM

第7章|控制电势阶跃的暂态测量方法

第6章提到过,控制电势阶跃和控制电流阶跃是个对称的关系。但是,二者又存在着很大的差异,需要对比学习

传荷过程控制下的小幅度电势阶跃暂态测量

电势阶跃法

小幅阶跃,单向极化持续时间短,浓差极化忽略不计,电极处于电荷传递过程控制,等效电路简化为:

通过等效电路测定 R u , R c t , C d R_u, R_{ct},C_d Ru,Rct,Cd

电势阶跃加到电极上后,虽然电极体系施加了一个 η \eta η的电势差,但界面电势差(双电层)并未突跃,可以理解为 C d C_d Cd先短路,然后产生一阶响应。所以此时电压加到了溶液欧姆压降 R u R_u Ru上,瞬间电流达到$-\frac{\eta}{R_u} $ i = − η R R u i = \frac{- \eta_R}{R_u} i=RuηR,双垫层以此电流开始充电。随着充电的进行,双电层电势差即电化学极化超电势 η e \eta_e ηe增大,Faraday电流 i f i_f if增大;由于总的超电势为 η \eta η不变,所以欧姆压降 η R = η − η e \eta_R = \eta - \eta_e ηR=ηηe不断变小,总电流 i = − η R R u i = \frac{-\eta_R}{R_u} i=RuηR不断建校。而 i = i C + i f , i = i_C + i_f, i=iC+if所以 i C i_C iC逐渐减小到0,充电过程结束,电化学反应、电化学超电势达到稳态,反应电流达到稳态值 i ∞ i_\infty i

(1)极限简化法

在这里插入图片描述

t = 0 , R u = − η i t = 0 t > ( 3 − 5 ) τ C , R c t = − η i ∞ − R u , = − η i ∞ ( 补偿 ) C d = − 1 η ∫ B C i d t (条件:选择合适的溶液和电势范围, 是在该电势范围内接近理想计划电极, R c t → ∞ , i f → 0 ) t = 0, R_u = \frac{-\eta}{i_{t=0}} \\ t > (3-5)\tau_C, R_{ct} = \frac{-\eta}{i_ \infty} - Ru, = \frac{- \eta}{i_\infty}(补偿) \\ Cd = - \frac{1}{\eta} \int_B^C idt \\ (条件:选择合适的溶液和电势范围,\\ 是在该电势范围内接近理想计划电极,R_{ct}→\infty, i_f → 0) t=0,Ru=it=0ηt>(35)τC,Rct=iηRu,=iη(补偿)Cd=η1BCidt(条件:选择合适的溶液和电势范围,是在该电势范围内接近理想计划电极,Rct,if0

(2)方程解析法

可以参考第6章|控制电流暂态测量

i-t曲线理论方程
i = i ∞ [ 1 + R c t R u e x p ( − t R / / C d ) ] i = i_\infty [1+\frac{R_{ct}}{Ru} exp(-\frac{t}{R_{//}{C_d}})] i=i[1+RuRctexp(R//Cdt)]
变化为直线方程:
l g ( i − i ∞ ) = l g A − 1 2.3 R / / C d ) t lg(i-i_\infty) = lgA - \frac{1}{2.3R_{//}C_d)}t lg(ii)=lgA2.3R//Cd)1t
试选 i ∞ i_\infty i,求出斜率K,则
R c t = − η i ∞ − R u C d = 1 2.3 ∣ K ∣ ( 1 R u + 1 R c t ) R_{ct} = \frac{-\eta}{i_\infty} - R_u \\ C_d = \frac{1}{2.3 \lvert K \rvert}(\frac{1}{R_u}+\frac{1}{R_{ct}}) Rct=iηRuCd=2.3K1(Ru1+Rct1)

方波电势法

在这里插入图片描述

R u = ∣ Δ E ∣ i B − i A R c t = ∣ Δ E ∣ i ∞ − R u = ∣ Δ E ∣ i ∞ (补偿) C d = 1 ∣ Δ E ∣ ∫ B C i d t Ru = \frac{\lvert \Delta E\rvert}{i_B - i_A} \\ R_{ct} = \frac{\lvert \Delta E\rvert}{i_\infty} - Ru = \frac{\lvert \Delta E\rvert}{i_\infty}(补偿) \\ C_d = \frac{1}{\lvert \Delta E \rvert} \int_B^C idt Ru=iBiAΔERct=iΔERu=iΔE(补偿)Cd=ΔE1BCidt

注意事项:

  1. 小幅阶跃,单向极化持续时间短,浓差极化忽略不计,电极处于电荷传递过程控制
  2. 不适用于测Ru。实际测量时,由于恒电势仪输出能力和测量电路的“时间常数”限制,开始极化后电流上升需要一定的时间,不想理论预测那样瞬间达到最大值。所以电流突跃测量值有很大误差
  3. C d C_d Cd时,要求 R c t → ∞ , R u → 0 R_{ct}→\infty, Ru→0 Rct,Ru0,并且可以用于多孔电极(不要求使用 t < < τ C t<<\tau_C t<<τC的曲线斜率)
  4. 测量 R c t R_{ct} Rct时,要求 t > > τ C t>>\tau_C t>>τC

极限扩散控制下的电势阶跃技术

采用大幅度电势阶跃信号,使电极处于极限扩散控制下

由于是极限扩散,提供了一个现成的边界条件 C o ( 0 , t ) = 0 ( t > 0 ) C_o(0,t)=0 (t>0) Co(0,t)=0(t>0)

平板电极

解偏微分方程,得Cottrell方程(重点掌握)
i d ( t ) = n F A D O C O ∗ π t i_d(t) = \frac{nFA\sqrt{D_O}C_O^*}{\sqrt{\pi t}} id(t)=πt nFADO CO

在这里插入图片描述

有效扩散层厚度: π D O t \sqrt{\pi D_O t} πDOt

平板电极单纯依靠扩散作用无法达到稳态(除非有对流)

球形电极

球形电极可以自发建立稳态

取样电流伏安法

同样,这里没有了极限扩散条件,需要分三种情况讨论:平衡态、准可逆和完全不可逆

注:这里不对超微电极做过多讲解,看书了解即可。(赌一波不考(x))

平衡态(可逆)

定解条件为Nernst方程,

表面浓度分布:
C O ( 0 , t ) C O ∗ = ξ θ 1 + ξ θ C R ( 0 , t ) C O ∗ = ξ 1 + ξ θ \frac{C_O(0,t)}{C_O^*} = \frac{\xi \theta}{1 + \xi \theta} \\ \frac{C_R(0,t)}{C_O^*} = \frac{\xi}{1 + \xi \theta} COCO(0,t)=1+ξθξθCOCR(0,t)=1+ξθξ
进一步推得:
C O ( 0 , t ) = C O ∗ [ 1 − i ( t ) i d ( t ) ] C R ( 0 , t ) = ξ C O ∗ [ i ( t ) i d ( t ) ] C_O(0,t) = C_O^*[1-\frac{i(t)}{i_d(t)}] \\ C_R(0,t) = \xi C_O^*[\frac{i(t)}{i_d(t)}] CO(0,t)=CO[1id(t)i(t)]CR(0,t)=ξCO[id(t)i(t)]

取样电流伏安曲线:
E = E 1 / 2 + R T n F l n [ i d ( τ ) − i ( τ ) i ( τ ) ] E 1 / 2 = E Θ ′ + R T n F l n D R D O E = E_{1/2} + \frac{RT}{nF}ln[\frac{i_d(\tau)- i(\tau)}{i(\tau)}] \\ E_{1/2} = E^{\Theta '} + \frac{RT}{nF} ln \sqrt{ \frac{D_R}{D_O} } E=E1/2+nFRTln[i(τ)id(τ)i(τ)]E1/2=EΘ+nFRTlnDODR

准可逆与不可逆

代入原始动力学方程作为初始条件

计时库伦法

相比于计时安培法,有如下优点:

  1. 更好的信噪比。电流随时间下降,计时安培法后期电流衰减到较小的数值,误差大;而计时库伦法计算的电量随时间增大而增大(积分值)
  2. 对暂态电流的随机噪声有平滑作用
  3. 双层充电量、用于吸附物质的电极反应的电量 同 用于扩散反应物的电极反应的电量区分开来

第8章|线性电势扫描伏安法

线性扫描过程概述

电极电势的变化率成为扫描速度,为常数, v = ∣ d E d t ∣ = c o n s t v = \lvert \frac{dE}{dt} \rvert = const v=dtdE=const。线性电势扫描法伏安法属于控制电势暂态测量方法,第7章讨论的是具有电势突跃的情况,而线性电势扫描伏安法则是电势连续线性变化的情况。

响应电流特点

不存在表面活性物质吸脱附时,由于扫速引起的双电层充电电流恒定不变,即 i C = − C d d E d t = c o n s t i_C = -C_d \frac{dE}{dt} = const iC=CddtdE=const

扫速增加时, i d 比 i f i_d比i_f idif增加得更多, i C i_C iC在总电流中的比例增加;相反,扫速足够低时, i C i_C iC所占的足够小,可忽略

伏安曲线和电流峰形成的原因:(回答:曲线中XX部分的电流含有哪些成分,XX峰是如何形成的)

电势扫描过程中,随着电势的移动,电极的极化越来越大,电化学极化和浓差极化相继出现。随着极化增大,反应物表面浓度不断下降,扩散层中反应物的浓度差不断增大,导致扩散流量增大,扩散电流升高。当反应物的表面浓度下降到0时,达到完全浓差极化,电流达到极限扩散电流。此时,扩散过程并未达到稳态,电势继续扫描,相当于延长计划时间,扩散层厚度越来越大,扩散流量却逐渐下降,扩散电流降低形成电流峰。越过峰值后,电流衰减符合Cottrell方程。

小幅三角波

小幅,忽略浓差极化, R c t , C d R_{ct}, C_d Rct,Cd恒定,现在测量三个参数 R u , R c t , C d Ru, R_{ct}, C_d Ru,Rct,Cd

在这里插入图片描述

若忽略溶液电阻 R u , i = − C d d E d t + i f , i C = C d v 是常数 Ru, i=-C_d \frac{dE}{dt} + i_f, i_C=C_dv是常数 Ru,i=CddtdE+if,iC=Cdv是常数;因为电势线性变化,Faraday电流 i f i_f if也随时间线性变化(??? i f = E R c t i_f = \frac{E}{R_{ct}} if=RctE),总的电流线性变化

结论:
C d = Δ i 2 v = Δ i T 4 Δ E R c t = ∣ Δ E ∣ i B − i A ′ C_d = \frac{\Delta i}{2v} = \frac{\Delta i T}{4 \Delta E}\\ R_{ct} = \frac{\lvert \Delta E \rvert}{i_B - i_A'} Cd=2vΔi=EΔiTRct=iBiAΔE
若考虑溶液电阻,外推法找点: R c t = ∣ Δ E ∣ i B − i A ′ − R u R_{ct} = \frac{\lvert \Delta E \rvert}{i_B - i_A'} - Ru Rct=iBiAΔERu

要求Ru很小或可补偿,电极表面有高阻膜时也不宜使用这种方法。

注意:

  1. 小幅三角波电势扫描测Cd,可用于多孔电极(第二种方法!
  2. 测Cd时,可以有电化学反应发生。(非常大的优势)对比而言,控制电势阶跃必须是电极处于理想极化状态, R c t → ∞ R_{ct}→ \infty Rct,保证流过电极的电流全部用于双电层充电;控制电流阶跃法,也要保证 R c t → ∞ R_{ct} → \infty Rct,事时间常数很大,易于测量阶跃瞬间电势-时间曲线的斜率(!!!后期做个总结!对比一下三种方法!)
  3. 溶液电阻越小越好,最好可补偿
  4. 由于 C d = Δ i 2 v C_d = \frac{\Delta i}{2v} Cd=2vΔi,测Cd时,为了突出突跃部分 Δ i \Delta i Δi,提高测量精度,应采用较大的扫描速率v,较高的三角波频率。相反,测 R c t R_{ct} Rct时,尽量减少v,突出线性变化的法拉第电流部分
浓差极化存在时的单程线性电势扫描伏安法

分为可逆、完全不可逆和准可逆三种情况讨论,此处不做重点讨论,略

循环伏安法

在这里插入图片描述

扫描电势换向时,阴极反应达到了完全浓差极化状态,此时阴极电流为暂态的极限扩散电流,符合Cottrell方程,按照 i ∝ t − 1 / 2 i \propto t^{-1/2} it1/2的规律衰减。正向扫描时需要重现确定基线

可逆体系

产物稳定的可逆体系,循环伏安曲线两组参数具有下述重要特征:

  1. $i_{Pa} = i_{Pc}→ \lvert \frac{i_{Pa}}{i_{Pc}} = 1 \rvert \$,并且与扫速v,换向电势、扩散系数等无关
  2. ∣ Δ E p ∣ = E p a − E p c ≈ 2.3 R T n F ≈ 59 n m V \lvert \Delta E_p \rvert = Ep_a - Ep_c \approx \frac{2.3RT}{nF} \approx \frac{59}{n} mV ΔEp=EpaEpcnF2.3RTn59mV,且不随扫速变化

准可逆体系

  1. i P a ≠ i P c i_{Pa} \neq i_{Pc} iPa=iPc
  2. ∣ Δ E p ∣ > 59 n m V \lvert \Delta E_p \rvert > \frac{59}{n}mV ΔEp>n59mV,且随扫速的增大而增大(重点看这一条)

完全不可逆

观察不到反向扫描峰

重点看一下P142的例题及对曲线的说明

判断电阻率

开始出现峰的电势与平衡电势的偏离程度→反应物的电阻率,越接近(0.1V左右),电阻率越低,极化越小

峰高→产物的电阻率,峰越高,电阻率越低,极化越小

判断电极过程可逆性:

∣ Δ E p ∣ ≈ 59 n m V \lvert \Delta E_p \rvert \approx \frac{59}{n} mV ΔEpn59mV,且不随扫速变化,可逆;

∣ Δ E p ∣ > 59 n m V \lvert \Delta E_p \rvert > \frac{59}{n} mV ΔEp>n59mV,且随扫速增加,不可逆电极

相同的扫速下, ∣ Δ E p ∣ \lvert \Delta E_p \rvert ΔEp越大,反应的不可逆程度越高

判断反应物来源:

如果反应物来源于溶液,通过扩散过程到达电极表面参与电极反应,伏安曲线上会出现电流峰。对i-t曲线积分,积分出来的面积为用于电化学反应的电量(忽略双电层的充电电量)

Q = C O ∗ D O 1 / 2 v − 1 / 2 ∫ E 1 E 2 ϕ ( E ) d E ∝ v − 1 / 2 Q = C_O^*D_O^{1/2}v^{-1/2} \int_ {E_1}^{E_2} \phi(E)dE \propto v^{-1/2} Q=CODO1/2v1/2E1E2ϕ(E)dEv1/2

因此,若反应物来源于溶液,扫速越慢,本体溶液中的反应物来得及更多地扩散到电极表面参与反应。

相反,如果是预先吸附电极表面上的,由于吸附反应物的量是恒定的,所以吸附反应物消耗完毕所需的电量 Q θ Q_\theta Qθ也是恒定的,与扫速无关

研究吸附过程:

同上,预先吸附电极表面上的,由于吸附反应物的量是恒定的,所以吸附反应物消耗完毕所需的电量 Q θ Q_\theta Qθ也是恒定的,与扫速无关。因此可根据电量加以区分。另外,吸附反应物伏安曲线上的峰值电流 i P i_P iP不是同 v 1 / 2 v^{1/2} v1/2成正比,而是正比于扫速v,即 i p ∝ v i_p \propto v ipv。在Langmuir吸附等温式下, E P c = E P a E_{Pc} = E_{Pa} EPc=EPa

P145的案例重点研究

第9章|伏安脉冲法

第10章|交流阻抗法

小幅度正弦波电信号对体系扰动,电流与电势近似为线性关系,满足频响函数的线性条件要求

Nyquist图,应该只写第一行,交代一下 σ ′ \sigma' σ就行

在这里插入图片描述

传荷控制下:

在这里插入图片描述

O A ˉ = R u A C ˉ = R c t C d = 1 ω B R c t , ω B :半圆顶点角频率 如果没有顶点角频率: C d = 1 ω B R c t , ω B D ′ C ˉ A D ′ ˉ \bar{OA} = R_u \\ \bar{AC} = R_{ct} \\ C_d = \frac{1}{\omega_B R_{ct}}, \omega_B:半圆顶点角频率 \\ 如果没有顶点角频率: C_d = \frac{1}{\omega_B R_{ct}}, \omega_B \sqrt{\frac{\bar{D'C}}{\bar{AD'}}} OAˉ=RuACˉ=RctCd=ωBRct1,ωB:半圆顶点角频率如果没有顶点角频率:Cd=ωBRct1,ωBADˉDCˉ
传质控制下:

常相位元件:
C P E , 用 Q 表示,阻抗为 Z = 1 Y 0 ( j ω ) − n n = 0 , 电阻, Y 0 = 1 R n = 1 , 电容, Y 0 = C , Y = j w C n = − 1 , 电感, Y 0 = 1 L , Y = − j 1 ω L n = 0.5 , W a r b u r g 阻抗,半无限扩散引起,阻抗谱为一条过原点的倾角为 π / 4 的直线 CPE, 用Q表示,阻抗为Z = \frac{1}{Y_0}(j\omega)^{-n} \\ n = 0, 电阻, Y_0 = \frac{1}{R} \\ n = 1, 电容, Y_0 = C, Y = jwC \\ n = -1, 电感, Y_0 = \frac{1}{L}, Y = -j \frac{1}{\omega L} \\ n = 0.5, Warburg阻抗,半无限扩散引起,阻抗谱为一条过原点的倾角为\pi/4的直线 CPE,Q表示,阻抗为Z=Y01()nn=0,电阻,Y0=R1n=1,电容,Y0=C,Y=jwCn=1,电感,Y0=L1,Y=jωL1n=0.5,Warburg阻抗,半无限扩散引起,阻抗谱为一条过原点的倾角为π/4的直线

在这里插入图片描述

法拉第阻抗的实部和虚部分别为:
( Z f ) R e = R c t + σ ′ ω − 1 / 2 ( Z f ) I m = σ ′ ω − 1 / 2 (Z_f)_{Re} = R_{ct} + \sigma' \omega^{-1/2} \\ (Z_f)_{Im} = \sigma' \omega^{-1/2} (Zf)Re=Rct+σω1/2(Zf)Im=σω1/2
通过斜率估算扩散系数 σ ′ \sigma' σ

混合控制时:

在这里插入图片描述

补一个嵌入型电极的典型阻抗谱

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值