PyTorch深度学习环境搭建指南(含M1芯片深度优化)

本文是面向开发者的超详细环境搭建手册,覆盖Windows/Linux/macOS三大平台,针对NVIDIA显卡、AMD显卡(ROCm)及Apple M1/M2芯片进行全场景适配。


一、环境搭建核心原则

1. 硬件与软件对应关系(必读!)
硬件类型 操作系统 核心依赖 加速框架
NVIDIA显卡 Windows/Linux CUDA + cuDNN Torch CUDA
AMD显卡 Linux ROCm Torch ROCm
Apple Silicon macOS ≥12.3 Metal Performance Torch MPS
无显卡/集显 全平台 CPU-only Torch CPU
2. 避坑指南(新手必看)
  • 版本匹配陷阱:PyTorch 2.3+要求CUDA ≥11.8,Python ≥3.8
  • 权限问题:Linux/Mac需避免使用sudo pip install导致环境混乱
  • 代理设置:若出现SSLError,需执行:
    pip config set global.trusted-host pypi.org files.pythonhosted.org pypi.python.org --trusted-host
    

二、NVIDIA显卡全流程配置(Windows/Linux双平台)

1. Windows系统深度配置
1.1 驱动安装(含特殊机型适配)
  • 驱动选择
    • 游戏本(如ROG/外星人):优先使用厂商定制驱动(避免公版驱动黑屏)
    • 工作站显卡(Quadro系列):从NVIDIA企业驱动库下载SD认证版本
  • 验证工具
    nvidia-smi.exe -l 1  # 每秒刷新GPU状态(观察温度/功耗)
    
1.2 CUDA Toolkit自定义安装
  • 关键选项
    • 安装时取消勾选Visual Studio Integration(避免VS2019冲突)
    • 手动添加环境变量:
      CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1  
      PATH += %CUDA_PATH%\bin;%CUDA_PATH%\libnvvp
      
    </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值