本文是面向开发者的超详细环境搭建手册,覆盖Windows/Linux/macOS三大平台,针对NVIDIA显卡、AMD显卡(ROCm)及Apple M1/M2芯片进行全场景适配。
一、环境搭建核心原则
1. 硬件与软件对应关系(必读!)
硬件类型 | 操作系统 | 核心依赖 | 加速框架 |
---|---|---|---|
NVIDIA显卡 | Windows/Linux | CUDA + cuDNN | Torch CUDA |
AMD显卡 | Linux | ROCm | Torch ROCm |
Apple Silicon | macOS ≥12.3 | Metal Performance | Torch MPS |
无显卡/集显 | 全平台 | CPU-only | Torch CPU |
2. 避坑指南(新手必看)
- 版本匹配陷阱:PyTorch 2.3+要求CUDA ≥11.8,Python ≥3.8
- 权限问题:Linux/Mac需避免使用
sudo pip install
导致环境混乱 - 代理设置:若出现
SSLError
,需执行:pip config set global.trusted-host pypi.org files.pythonhosted.org pypi.python.org --trusted-host
二、NVIDIA显卡全流程配置(Windows/Linux双平台)
1. Windows系统深度配置
1.1 驱动安装(含特殊机型适配)
- 驱动选择:
- 游戏本(如ROG/外星人):优先使用厂商定制驱动(避免公版驱动黑屏)
- 工作站显卡(Quadro系列):从NVIDIA企业驱动库下载SD认证版本
- 验证工具:
nvidia-smi.exe -l 1 # 每秒刷新GPU状态(观察温度/功耗)
1.2 CUDA Toolkit自定义安装
- 关键选项:
- 安装时取消勾选
Visual Studio Integration
(避免VS2019冲突) - 手动添加环境变量:
CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1 PATH += %CUDA_PATH%\bin;%CUDA_PATH%\libnvvp
- 安装时取消勾选