判断度序列能否构成无向图/无向简单图

判断度序列是否能构成无向图:

根据图的性质:度数为奇数的结点个数为偶数个

{1,1,1,2,3,3}:这里度数为奇数的结点个数为奇数个,不能构成无向图。

{3,5,1,4},{1,2,3,4,5}同理。

判断度序列是否能构成无向简单图

对于一个序列{1,3,3,3},它满足奇数的结点个数为偶数个,是无向图,但是它不是无向简单图。

① 序列{1,3,3,3}先从大到小排列:{3,3,3,1}

② 删去第一个元素3,由于第一个元素是3,所以将后面3个元素各减去1,得到{2,2,0}

③ 重复上面的做法,变为{1,-1}

④ 由于出现负数,所以不能构成无向简单图,如果最后化的元素都为0,那么就能构成。

例如:{2,2,2,2,2}

① 删去2,后面“2”个结点度数减1,得到{2,2,1,1}

② 重复上面的做法,最终会变为{0,0},所以该序列为无向简单图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值