AS-V1000平台接入多个视频画面,实时拼接成一个宽视角的高分辨率视频播放

目录

一、背景描述

二、操作过程

1.监控设备接入视频监控平台中

2.通过AS-V1000,输出设备的RTSP流

3.将设备的RTSP接入到拼接系统中

4.创建并启动拼接任务

5.将输出的流接入到AS-V1000

三、最终效果


一、背景描述

        随着城市化进程的加快和公共场所安全需求的增加,监控摄像头已经成为了维护公共安全和秩序的重要工具。然而,在大型建筑群、交通枢纽、商场超市等复杂环境中,单个监控摄像头的视野范围往往有限,难以全面覆盖所有关键区域。为了弥补这一不足,通常会在这些区域部署多个监控摄像头,但这又带来了新的问题:监控人员需要同时关注多个屏幕上的画面,不仅增加了工作负担,还可能导致关键信息的遗漏或延迟处理。

        为了解决这个问题,as-v1000平台提供了一个功能,可以将两个或多个视频画面拼接为一个,在平台进行播放。通过将相邻或相关的监控摄像头画面无缝拼接在一起,可以在一个屏幕上展示更广阔的视野范围,让监控人员能够一目了然地掌握整个监控区域的动态情况。这样,不仅可以减轻监控人员的工作压力,提高监控效率,还能帮助监控人员更快地发现异常情况,及时采取措施进行处理。

        此外,监控视频画面的拼接合成还有助于构建更加智能的监控系统。通过将多个摄像头画面集成到一个画面中,可以利用视频分析、人脸识别、行为识别等智能技术,对监控画面进行实时分析和预警,进一步提升监控系统的智能化水平和安全性。

二、操作过程

以下是整套操作的流程图和实际操作过程说明

1.监控设备接入视频监控平台中

具体操作步骤可以查看之前的文章:《设备通过国标GB28181接入视频平台

2.通过AS-V1000,输出设备的RTSP流

具体操作步骤可查看之前的文章:《AS-V1000视频监控平台输出大容量RTSP视频流的配置

经过as-v1000平台转换后,输入的RTSP流的地址格式为:

rtsp://<ip>:25554/DevAor=<通道编号>

3.将设备的RTSP接入到拼接系统中

在设备管理页面点击添加设备

        在新增设备页面填入必要的信息和as-v1000视频平台输出的新rtsp地址 

4.创建并启动拼接任务

    在威迪斯特拼接系统中,启动一个新的拼接任务,在设备选择出添加新接入的RTSP流。

    在左下方的参数设置处,调整各项参数,使得拼接效果达到令人满意的程度。

    随后点击右下角的启动按钮,启动拼接任务。

启动拼接任务后,拼接平台会输出一个对应拼接任务的RTSP流

5.将输出的流接入到AS-V1000

三、呈现效果

        经过通道管理、资源分配、角色权限分配等一系列后,用户即可使用对应的账号在as-v1000视频平台客户端查看到拼接后的视频画面。

        拼接视频在as-v1000平台播放画面如下图所示:


 文章正下方可以看到我的联系方式:鼠标“点击” 下面的 “威迪斯特-就是video system 微信名片”字样,就会出现我的二维码,欢迎沟通探讨。


压缩包中包含的具体内容: 对给定数据中的6个不同场景图像,进行全景图拼接操作,具体要求如下: (1) 寻找关键点,获取关键点的位置和尺度信息(DoG检测子已由KeypointDetect文件夹中的detect_features_DoG.m文件实现;请参照该算子,自行编写程序实现Harris-Laplacian检测子)。 (2) 在每一幅图像中,对每个关键点提取待拼接图像的SIFT描述子(编辑SIFTDescriptor.m文件实现该操作,运行EvaluateSIFTDescriptor.m文件检查实现结果)。 (3) 比较来自两幅不同图像的SIFT描述子,寻找匹配关键点(编辑SIFTSimpleMatcher.m文件计算两幅图像SIFT描述子间的Euclidean距离,实现该操作,运行EvaluateSIFTMatcher.m文件检查实现结果)。 (4) 基于图像中的匹配关键点,对两幅图像进行配准。请分别采用最小二乘方法(编辑ComputeAffineMatrix.m文件实现该操作,运行EvaluateAffineMatrix.m文件检查实现结果)和RANSAC方法估计两幅图像间的变换矩阵(编辑RANSACFit.m 文件中的ComputeError()函数实现该操作,运行TransformationTester.m文件检查实现结果)。 (5) 基于变换矩阵,对其中一幅图像进行变换处理,将其与另一幅图像进行拼接。 (6) 对同一场景的多幅图像进行上述操作,实现场景的全景图拼接(编辑MultipleStitch.m文件中的makeTransformToReferenceFrame函数实现该操作)。可以运行StitchTester.m查看拼接结果。 (7) 请比较DoG检测子和Harris-Laplacian检测子的实验结果。图像拼接的效果对实验数据中的几个场景效果不同,请分析原因。 已经实现这些功能,并且编译运行均不报错!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值