以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:
1. 参数模型(Parametric Models)
假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。
1.1 线性回归模型
- 数学形式:( y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_p x_p + \epsilon )
- 应用:预测连续型目标变量(如房价预测)。
- 特点:简单、可解释性强,假设误差项独立同分布(i.i.d)。
1.2 逻辑回归模型
- 数学形式:( P(y=1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p)}} )
- 应用:二分类问题(如信用评分、疾病诊断)。
- 特点:输出为概率,使用对数几率(logit)连接函数。
1.3 泊松回归模型
- 数学形式:( \log(\lambda) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p )
- 应用:计数型数据建模(如交通事故次数、呼叫中心来电数)。
- 特点:响应变量服从泊松分布,均值等于方差。
1.4 广义线性模型(GLM)
- 数学形式:( g(\mu) = \beta_0 + \beta_1 x_1 + \cdots + \beta_p x_p )
- 应用:扩展线性回归,支持非正态分布(如二项分布、伽马分布)。
- 特点:通过链接函数 ( g(\cdot) ) 连接线性预测器和响应变量。
2. 非参数模型(Nonparametric Models)
不假设数据分布形式,灵活适应复杂结构。
2.1 核密度估计(Kernel Density Estimation, KDE)
- 数学形式:( \hat{f}(x) = \frac{1}{n h} \sum_{i=1}^n K\left( \frac{x - x_i}{h} \right) )
- 应用:估计随机变量的概率密度函数(PDF)。
- 特点:无需分布假设,依赖带宽 ( h ) 的选择。
2.2 局部加权回归(LOESS)
- 数学形式:对局部数据点加权拟合多项式回归。
- 应用:非线性关系建模(如趋势分析)。
- 特点:灵活适应数据局部变化,计算成本较高。
3. 时间序列模型
用于分析随时间变化的数据,捕捉趋势、季节性和自相关性。
3.1 自回归模型(AR)
- 数学形式:( y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \epsilon_t )
- 应用:股票价格预测、经济指标分析。
- 特点:当前值与历史值线性相关。
3.2 移动平均模型(MA)
- 数学形式:( y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \cdots + \theta_q \epsilon_{t-q} )
- 应用:消除随机波动,提取平稳成分。
- 特点:当前值与历史误差项相关。
3.3 ARIMA模型
- 数学形式:AR + 差分(I) + MA,即 ( \text{ARIMA}(p, d, q) )
- 应用:非平稳时间序列预测(如销售量、气温)。
- 特点:通过差分使序列平稳,结合AR和MA特性。
4. 贝叶斯模型
基于贝叶斯定理,结合先验分布和似然函数进行推断。
4.1 贝叶斯线性回归
- 数学形式:( P(\beta | y, X) \propto P(y | X, \beta) P(\beta) )
- 应用:小样本数据下的参数估计。
- 特点:提供参数的后验分布,而非点估计。
4.2 隐马尔可夫模型(HMM)
- 数学形式:状态转移概率 + 观测概率。
- 应用:语音识别、基因序列分析。
- 特点:假设隐藏状态驱动观测结果。
5. 生存分析模型
研究事件发生时间的分布及影响因素。
5.1 Kaplan-Meier估计
- 数学形式:( S(t) = \prod_{t_i \leq t} \left( 1 - \frac{d_i}{n_i} \right) )
- 应用:生存率估计(如患者存活时间)。
- 特点:非参数方法,处理右删失数据。
5.2 Cox比例风险模型
- 数学形式:( h(t | X) = h_0(t) \exp(\beta_1 x_1 + \cdots + \beta_p x_p) )
- 应用:分析生存时间与协变量的关系。
- 特点:不假设基准风险函数 ( h_0(t) ) 的形式。
6. 聚类与降维模型
用于无监督学习,发现数据内在结构。
6.1 K均值聚类(K-Means)
- 数学形式:最小化组内平方和 ( \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2 )
- 应用:客户分群、图像压缩。
- 特点:需预先指定簇数 ( k ),对异常值敏感。
6.2 主成分分析(PCA)
- 数学形式:协方差矩阵特征分解,保留最大方差方向。
- 应用:数据降维、可视化。
- 特点:线性变换,无监督特征提取。
总结
模型类型 | 典型模型 | 核心特点 | 应用场景 |
---|---|---|---|
参数模型 | 线性回归、逻辑回归 | 假设分布,参数可解释 | 预测、分类 |
非参数模型 | KDE、LOESS | 灵活适应复杂数据 | 密度估计、趋势分析 |
时间序列模型 | ARIMA、HMM | 捕捉时序依赖 | 经济预测、语音识别 |
贝叶斯模型 | 贝叶斯回归 | 结合先验与后验 | 小样本推断 |
生存分析模型 | Cox模型 | 处理删失数据 | 医学研究、可靠性分析 |
聚类与降维 | K-Means、PCA | 无监督学习,数据压缩 | 客户分群、特征工程 |
根据具体问题选择模型时,需考虑数据分布、样本量、目标变量类型(连续/离散)以及是否需要可解释性。