【机器学习】 — 3、KNN算法及其应用

K近邻算法(K-nearest neighbors,KNN ),是一种很基本朴实的机器学习方法。

KNN 在我们日常生活中也有类似的思想应用,比如,我们判断一个人的人品,往往只需要观察他最密切的几个人的人品好坏就能得到结果了。这就是 KNN 的思想应用,KNN 方法既可以做分类,也可以做回归。在本篇内容中,我们来给大家展开讲解 KNN 相关的知识原理。

1、机器学习与分类问题

1)分类问题

分类问题是机器学习非常重要的一个组成部分,属于监督学习,它的目标是根据已知样本的某些特征,判断一个样本属于哪个类别

分类问题可以细分如下:

  • 二分类问题:表示分类任务中有两个类别新的样本属于哪种已知的样本类。

  • 多类分类(Multiclass classification)问题:表示分类任务中有多类别。

  • 多标签分类(Multilabel classification)问题:给每个样本一系列的目标标签。

2)分类问题的数学抽象

从算法的角度解决一个分类问题,我们的训练数据会被映射成 n 维空间的样本点(这里的 n 就是特征维度),我们需要做的事情是对 n 维样本空间的点进行类别区分,某些点会归属到某个类别

常见的分类问题应用场景很多,我们选择几个进行举例说明:

  • 垃圾邮件识别:可以作为二分类问题,将邮件分为你「垃圾邮件」或者「正常邮件」。

  • 图像内容识别:因为图像的内容种类不止一个,图像内容可能是猫、狗、人等等,因此是多类分类问题。

  • 文本情感分析:既可以作为二分类问题,将情感分为褒贬两种,还可以作为多类分类问题,将情感种类扩展,比如分为:十分消极、消极、积极、十分积极等。

2、K近邻算法核心思想

在 KNN 分类中,输出是一个分类族群。一个对象的分类是由其邻居的「多数表决」确定的,K 个最近邻居( K 为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。

  • K = 1 ,则该对象的类别直接由最近的一个节点赋予。
  • 在 KNN 回归中,输出是该对象的属性值。该值是其 K 个最近邻居的值的平均值。
  • KNN 是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的惰性学习。 K 近邻算法是所有的机器学习算法中最简单的之一。

3、K近邻算法步骤与示例

1)K近邻算法工作原理

  • 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。

  • 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。

  • 一般来说,只选择样本数据集中前 N 个最相似的数据。 K 一般不大于 20 ,最后,选择 K 个中出现次数最多的分类,作为新数据的分类。

2)K近邻算法参数选择

  • 如何选择一个最佳的 K 值取决于数据。一般情况下,在分类时较大的 K 值能够减小噪声的影响,但会使类别之间的界限变得模糊。一个较好的 K 值能通过各种启发式技术(见超参数优化)来获取。

  • 噪声和非相关性特征的存在,或特征尺度与它们的重要性不一致会使 K 近邻算法的准确性严重降低。对于选取和缩放特征来改善分类已经做了很多研究。一个普遍的做法是利用进化算法优化功能扩展,还有一种较普遍的方法是利用训练样本的互信息进行选择特征

  • 在二元(两类)分类问题中,选取 K 为奇数有助于避免两个分类平票的情形。在此问题下,选取最佳经验 K 值的方法是自助法。

4、K近邻算法的缺点与改进

1)K近邻算法的优缺点

不同类别的样本点,分布在空间的不同区域。K 近邻是基于空间距离较近的样本类别来进行分类,本质上是对于特征空间的划分。

  • 优点:精度高、对异常值不敏感、无数据输入假定。
  • 缺点:计算复杂度高、空间复杂度高。
  • 适用数据范围:数值型和标称型。

2)K近邻算法的核心要素:距离度量准则

K 近邻算法依赖于空间中相近的点做类别判断,判断距离远近的度量标准非常重要。距离的度量标准,对很多算法来说都是核心要素(比如无监督学习的 聚类算法 也很大程度依赖距离度量),也对其结果有很大的影响。

$L_p$ 距离又称闵可夫斯基距离,Minkowski Distance)不是一种距离,而是一组距离的定义。

  • 参数 p = 1 时为曼哈顿距离(又称L1距离程式区块距离),表示两个点在标准坐标系上的绝对轴距之和。

  • 参数 p = 2 时为欧氏距离(又称L2距离欧几里得度量),是直线距离常见的两点之间或多点之间的距离表示法。

  • 参数 p = +∞  时,就是切比雪夫距离(各坐标数值差的最大值)。

3)K近邻算法的核心要素:K的大小

对于 KNN 算法而言, K 的大小取值也至关重要,如果选择较小的 K 值,意味着整体模型变得复杂(模型容易发生过拟合),模型学习的近似误差(approximation error)会减小,但估计误差(estimation error)会增大。

如果选择较大的 K 值,就意味着整体的模型变得简单,减少学习的估计误差,但缺点是学习的近似误差会增大。

在实际的应用中,一般采用一个比较小的 K值。并采用交叉验证的方法,选取一个最优的 K 值。

4)K近邻算法的缺点与改进

(1)缺点

  • 原始的 KNN 算法只考虑近邻不同类别的样本数量,而忽略掉了距离。
  • 样本库容量依赖性较强对 KNN 算法在实际应用中的限制较大:有不少类别无法提供足够的训练样本,使得 KNN 算法所需要的相对均匀的特征空间条件无法得到满足,使得识别的误差较大。

  • K 值的确定: KNN 算法必须指定值,K 值选择不当则分类精度不能保证。

(2)改进方法

加快 KNN 算法的分类速度

  • 浓缩训练样本当训练样本集中样本数量较大时,为了减小计算开销,可以对训练样本集进行编辑处理,即从原始训练样本集中选择最优的参考子集进行 K 近邻寻找,从而减少训练样本的存储量和提高计算效率。

  • 加快 K 个最近邻的搜索速度这类方法是通过快速搜索算法,在较短时间内找到待分类样本的 K 个最近邻。

对训练样本库的维护

  • 对训练样本库进行维护以满足 KNN 算法的需要,包括对训练样本库中的样本进行添加或删除,采用适当的办法来保证空间的大小,如符合某种条件的样本可以加入数据库中,同时可以对数据库库中已有符合某种条件的样本进行删除。从而保证训练样本库中的样本提供 KNN 算法所需要的相对均匀的特征空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值