无人机可以应用于不同的场景,例如日常的便民生活应用[1],农业生产过程[2],矿场的侦探和挖掘过程[3]等。单一的无人机不受地形的限制,但是由于携带电池能量的限制,执行任务时间短,并且难以承担较重的负载。无人车(船)移动范围受限于地形,难以到达特定的位置。无人机–无人车(船)的组合系统可以结合两者的优点,完成复杂的任务[4-5]。在执行任务结束后,无人机如何移动到指定位置是协同系统实际应用的关键问题[6],因此本文聚焦于无人机的自主降落问题。
在文献[7-8]中,作者将多种传统的控制方法应用于无人机降落任务,这些方法具有稳定和低算力需求的优点,但是较难实现最优的控制效果。文献[9-12]将强化学习理论应用于无人机降落问题,并取得良好的效果。在文献[13-16]中,使用强化学习原理调整控制算法的参数,面对不同的控制情形,能够实现较优的控制效果,但是并没有进行真实无人机实验。
针对以上方法的不足,本文结合深度强化学习理论和比例积分微分(proportional-integral-derivative, PID)控制方法,解决无人机降落至移动平台的问题,