旋翼无人机在移动平台降落的控制参数自学习调节方法

本文提出了一种结合深度强化学习和PID控制的无人机降落方法,解决了无人机在移动平台降落的问题。通过矫正纠偏框架优化训练,提升了控制策略的效率和鲁棒性。在仿真和真实环境中,实验结果显示该方法能实现高成功率的降落任务,尤其在移动平台环境下,表现出优于传统PID控制和无矫正学习方法的效果。
摘要由CSDN通过智能技术生成

无人机可以应用于不同的场景,例如日常的便民生活应用[1],农业生产过程[2],矿场的侦探和挖掘过程[3]等。单一的无人机不受地形的限制,但是由于携带电池能量的限制,执行任务时间短,并且难以承担较重的负载。无人车(船)移动范围受限于地形,难以到达特定的位置。无人机–无人车(船)的组合系统可以结合两者的优点,完成复杂的任务[4-5]。在执行任务结束后,无人机如何移动到指定位置是协同系统实际应用的关键问题[6],因此本文聚焦于无人机的自主降落问题。

在文献[7-8]中,作者将多种传统的控制方法应用于无人机降落任务,这些方法具有稳定和低算力需求的优点,但是较难实现最优的控制效果。文献[9-12]将强化学习理论应用于无人机降落问题,并取得良好的效果。在文献[13-16]中,使用强化学习原理调整控制算法的参数,面对不同的控制情形,能够实现较优的控制效果,但是并没有进行真实无人机实验。

针对以上方法的不足,本文结合深度强化学习理论和比例积分微分(proportional-integral-derivative, PID)控制方法,解决无人机降落至移动平台的问题,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值