近年来,随着电力系统规模和城市建设的不断发展,输电线路逐渐覆盖了苛刻的环境和复杂地形的区域[1]。输电线路是电力系统的重要组成部分。金具是输电线路中广泛使用的铁制或铝制金属附件,种类繁多,功能多样,主要用于支持、固定、接续裸导线、导体及绝缘子等[2]。因此输电线路的安全保障的重要环节就是对输电线路金具的运维和保障。当前输电线路运维方式主要依靠无人机航拍获得金具图像,凭借着基于机器视觉的图像处理技术对航拍图像和视频自动化处理[3]。对于输电线路金具目标精确定位和识别是对金具运行状态研判的前提,因此综合检测多类金具算法的研究具有极高价值[4]。
输电线路部件的识别与检测任务引起了众多学者的关注。传统图像处理方法通过设计目标特征将图像识别任务进行多阶段处理。文献[5]利用对形状的特征描述,实现了对绝缘子轮廓的识别。文献[6-8]实现了基于形态学特征的输电线路部件的特征提取与识别。文献[9-10]通过特征提取、图像分割分别实现了对于绝缘子及防振锤的定位和识别。传统图像处理方法需要多阶段处理图像特征,操作步骤繁琐且冗余,而且传统算法一般只能针对单一目标和缺陷进行识别,难以投入实际应用。基于机器学习方法使用人工特征提取以及多种机器学习算法相结合的方法进行金具识别。文献[11]通过聚合复频域特征以及多尺度通道特征,实现防震锤的检测,该算法在一定程度上提高了在复杂背景下对防震锤检测的精度。文献[12]提出利用层次模型提取多目