注意力优化的轻量目标检测网络及应用

本文提出了一种名为YOLOv5s-CCA的轻量级目标检测网络,通过融合通道注意力(SE)和空间注意力(CA)模块,实现了网络轻量化并提高了检测精度。实验表明,CA模块在YOLOv5s中的性能优于SE模块,尤其是在网络早期阶段插入CA模块效果最佳。YOLOv5s-CCA在PASCAL VOC 2012和Global Wheat 2020数据集上表现出良好的通用性和泛化性,为轻量化目标检测的部署提供了数据支撑。
摘要由CSDN通过智能技术生成

摘要: 本文以轻量化改进YOLO网络为主要目标,选取具有代表性的(squeeze and excitation, SE)通道注意力模块和比较新颖的(coordinate attention, CA)空间注意力模块与YOLOv5s目标检测网络进行融合,提出新的轻量网络模型YOLOv5s-CCA (YOLOv5s-C3-coordinate attention)和YOLOv5s-CSE(YOLOv5s-C3-squeeze-and-excitation)。通过进一步探索,论证出SE和CA注意力模块在YOLOv5s目标检测网络中最优插入位置的策略,实验论证了在轻量化网络模型中CA优于SE注意力模块。本文所提出的YOLOv5s-CCA网络模型在PASCAL VOC 2012数据集和Global Wheat 2020数据集中实现了网络轻量化并且精度较原始网络有所提升;并证实了YOLOv5s-CCA具有一定的通用性和泛化性,为其在实际生产与生活中进行轻量化部署提供了可靠的数据支撑和一定参考价值。

  • 关键词: 
  • 目标检测  /  
  • 深度学习  /  
  • 计算机视觉  /  
  • 轻量化网络  /  
  • 空间注意力  /  
  • 通道注意力  /  
  • 一阶目标检测网络  /  
  • 损失函数  

随着万物互联理念的提出,物联网设备得到了高速发展,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值