作者:老余捞鱼
原创不易,转载请标明出处及原作者。
写在前面的话:大家刚开始炒股时,对成交量会特别在意吗?是不是感觉K线图下方那些红红绿绿的柱子,仿佛藏着股市涨跌的所有秘密。但说实话,当时我完全看不懂这些柱子代表什么。经常盯着它们研究半天,结果还是亏多赚少。后来经过反复摸索,终于找到了一套更适合自己的分析方法。今天就把这些经验结合量化实现一起分享给大家,学会它,炒股盈利或许没那么难!
成交量为什么很重要?
为什么在股票交易中成交量分析会这么重要呢?成交量就像是股市的 “日记”,每一笔股票交易都被它清清楚楚地记录下来。
比如说在 2021 年初,特斯拉的股价在经历了一轮大幅上涨后,一直在 270 美元左右波动。光看股价,我很难判断走势,但成交量却给了我关键信息。
股价有时候会出现 “假突破”,迷惑我们这些股民,但成交量不会说谎。通过成交量,我能看出那些专业的机构投资者在做什么,他们是在大量买入股票,还是准备抛售。
接下来我会将这个六步量价分析法,一步步和大家分享。
第一步:成交量分析
我最喜欢用的炒股软件是 TradingView,很多炒股软件也都有成交量显示功能。它会用一根根柱子表示在一定时间内(比如 5 分钟、1 天)的股票成交量。我一般看日线图或者周线图,因为大行情往往藏在这些长期图表里。机构投资者买卖股票可不是短时间能完成的,他们会慢慢来。
我在研究英伟达(NVIDIA)股票的时候,股价大概在 50 美元。我在成交量数据上添加了移动平均线,这就好比给成交量数据加了个 “重点标记”。当成交量的柱子超过这条移动平均线的时候,就说明这只股票比平时更热门,交易更活跃。我还写了段 Python 代码来辅助分析:
import pandas as pd
import matplotlib.pyplot as plt
# NVIDIA数据
data = {'Day': ['01-10', '01-11', '01-12', '01-13'],
'Volume': [40000, 60000, 95000, 45000]}
df = pd.DataFrame(data)
# 调整移动平均线窗口为3天
df['MA'] = df['Volume'].rolling(window=3).mean()
# 识别“热门”交易日
df['Hot'] = df['Volume'] > df['MA']
# 绘图
plt.figure(figsize=(8, 5))
# 成交量柱状图
plt.bar(df['Day'], df['Volume'], color='green', alpha=0.7, label='Volume')
# 移动平均线折线图
plt.plot(df['Day'], df['MA'], color='purple', marker='o', linestyle='dashed', linewidth=2, label='3-day MA')
# 标记热门交易日
for i in range(len(df)):
if df['Hot'][i]: # 如果“Hot”为True
plt.text(df['Day'][i], df['Volume'][i] + 2000, '🔥', ha='center', fontsize=12)
# 标签和标题
plt.xlabel('Day')
plt.ylabel('Volume')
plt.title('NVIDIA Trading Volume with Moving Average')
plt.legend()
plt.xticks(rotation=45)
# 显示图表
plt.show()
像1月12日英伟达成交量的那次大幅上升,一下子就引起了我的注意。
第二步:识别主力动向
机构投资者开始悄悄买入一只股票,这种行为叫 “吸筹”。通过观察,我发现主力资金进场时,成交量会呈现温和放大,而不是突然暴量。比如,某只股票连续5天成交量递增20%,价格却波动不大,这很可能是主力在悄悄吸筹。
2022年底,我盯上了微策略(MSTR)这只股票。当时股价在150美元附近震荡,处于历史低位。有一天,我发现股价上涨时成交量明显放大,但随后的调整却缩量明显。这让我意识到,有大资金在悄悄建仓。
就像在批发市场里,看到有经验的买家趁着人少时,不动声色地大量采购新鲜食材,既不想惊动摊主涨价,也不想引起其他顾客抢购。这种低调的扫货方式,往往预示着后续可能会有一波行情。
这种"涨时放量、跌时缩量"的走势,正是主力吸筹的典型特征。果然,之后股价一路走高,验证了我的判断。这种量价关系,后来成了我识别主力动向的重要指标。
第三步:根据成交量线索找规律
我炒股以来最成功的交易之一,就是抓住了超微电脑(SMCI)的这波行情。当时股价在200美元左右,我发现了一个明显的规律:
- 先是出现"启动日"——成交量突然暴增,股价像火箭一样蹿升;
- 接着进入"喘息期"——股价回调,成交量萎缩,说明抛压很小;
- 最后迎来"推动期"——成交量再次放大,股价一飞冲天。
我就是靠着这个规律,在几个月内见证了股价从200美元涨到1000美元的奇迹。这种量价配合的走势,后来成了我选股的重要参考。
我还写了代码来提前发现这种规律,如下:
import pandas as pd
import matplotlib.pyplot as plt
# 示例数据(请用实际数据替换)
data = {
'Day': [1, 2, 3, 4, 5, 6, 7, 8],
'Volume': [100, 250, 80, 300, 90, 400, 110, 50],
'MA': [90, 100, 110, 120, 130, 140, 150, 160]
}
df = pd.DataFrame(data)
# 识别启动和回调点
spark_days = []
dip_days = []
spark_volumes = []
dip_volumes = []
for i in range(1, len(df) - 1):
if df['Volume'][i] > df['MA'][i] * 2: # 成交量大幅放大的日子
if df['Volume'][i + 1] < df['MA'][i + 1]: # 成交量回调的日子
spark_days.append(df['Day'][i])
dip_days.append(df['Day'][i + 1])
spark_volumes.append(df['Volume'][i])
dip_volumes.append(df['Volume'][i + 1])
# 绘制成交量和移动平均线
plt.figure(figsize=(10, 5))
plt.plot(df['Day'], df['Volume'], marker='o', linestyle='-', label='Volume', color='blue')
plt.plot(df['Day'], df['MA'], marker='s', linestyle='--', label='Moving Average (MA)', color='orange')
# 标记启动点
plt.scatter(spark_days, spark_volumes, color='red', label='Spark (Big Day)', s=100, marker='^')
# 标记回调点
plt.scatter(dip_days, dip_volumes, color='green', label='Dip (Quiet Dip)', s=100, marker='v')
# 标签和图例
plt.xlabel('Day')
plt.ylabel('Volume')
plt.title('Spark and Dip Detection')
plt.legend()
plt.grid(True)
# 显示图表
plt.show()
第四步:结合股价走势分析
光盯着成交量还不够,必须结合K线形态一起看。
2023年特斯拉就是个很好的例子:当时股价在270美元附近,成交量突然放大,随后走出了一个典型的"牛旗"形态——就像一面迎风飘扬的旗帜,先快速拉升形成旗杆,然后小幅震荡整理形成旗面。
这种形态往往预示着上涨中继,就像运动员起跳前的下蹲蓄力。
除此之外,还有上升三角形、楔形等整理形态,都像是股票在"深呼吸",为下一波行情做准备。掌握这些形态特征,能帮我们更好地把握买卖时机。
第五步:选择合适的入场时机
找准买点很关键。以MSTR为例,146美元这个位置两次都没跌破,形成了明显的支撑位。当股价放量突破146美元时,我就知道机会来了。我会盯着5分钟K线图,只要收盘价站稳146美元就立即进场。同时,我会把止损设在当天最低价下方,比如143美元,这样即使判断错误,损失也有限。
这个交易策略按下面的流程来:
详细逻辑流程图如下:
开始
│
▼
初始化:
触发价 = 146
价格序列 = [144, 145, 146.2, 147]
止损价 = 143
│
▼
遍历价格序列:
┌───────────┐
│ 当前价格 = 144 │
└───────────┘
│
▼
144 > 146 ? ✗ (否) → 继续循环
│
▼
┌───────────┐
│ 当前价格 = 145 │
└───────────┘
│
▼
145 > 146 ? ✗ (否) → 继续循环
│
▼
┌────────────┐
│ 当前价格 = 146.2 │
└────────────┘
│
▼
146.2 > 146 ? ✓ (是) → 输出:
"在146.2进场,止损设在143"
│
▼
结束循环
│
▼
程序结束
这种策略适用于突破交易,可以帮助投资者在关键价位及时进场,同时控制风险。
为了验证这个方法的可靠性,我还专门写了程序回测:
import matplotlib.pyplot as plt
# 数据
trigger = 146
prices = [144, 145, 146.2, 147] # 5分钟收盘价
stop = 143
entry_price = None
time_intervals = list(range(len(prices))) # 假设时间点为索引
# 寻找入场价格
for price in prices:
if price > trigger:
entry_price = price
break
# 绘制股价走势
plt.figure(figsize=(8, 5))
plt.plot(time_intervals, prices, marker='o', linestyle='-', label='Price Movement')
# 标记入场点
if entry_price:
entry_index = prices.index(entry_price)
plt.scatter(entry_index, entry_price, color='red', s=100, label=f'Entry at {entry_price}')
plt.axhline(y=stop, color='blue', linestyle='dashed', label=f'Stop at {stop}')
# 标签和标题
plt.xlabel("Time Intervals")
plt.ylabel("Price")
plt.title("Trade Entry Visualization")
plt.legend()
plt.grid()
plt.show()
这让我更有信心在实际交易中运用这个方法,而实际上通过这次交易,MSTR的股价一路涨到 450 美元,收益相当可观。
第六步:锁定利润
我的卖出策略讲究稳扎稳打。以MSTR为例,当股价涨到前期高点,比如200美元、300美元这些关键位置时,我会分批减仓,每次卖出25%的持仓。对于像SMCI这样创历史新高的股票,我会用斐波那契回撤位作为参考,随着股价上涨逐步获利了结。每次卖出后,我都会把止损位上移到成本价,确保已经到手的利润不会回吐。
这套方法让我抓住了不少大牛股,比如英伟达从50美元涨到100多美元,特斯拉从270美元涨到480美元。当然,没有完美的策略,我也犯过错误——曾经过早卖出了英伟达,错过了后面的翻倍行情。但只要坚持纪律,长期来看收益还是相当可观。
成交量分析彻底改变了我的交易方式。它让我摆脱了盲目跟风的坏习惯,找到了可复制的盈利模式。成交量不是简单的柱状图,而是市场情绪的温度计,是主力动向的指南针。建议大家看盘时多关注成交量变化,结合价格走势,相信你也能发现属于自己的交易机会。
最后,我想说的是,股市投资需要耐心和纪律。希望我的经验对大家有所帮助,祝各位投资者都能在股市中找到属于自己的财富密码!记住,稳扎稳打,方能行稳致远。
观点总结
本文分享了通过分析成交量在股市盈利的经验,学会看成交量让炒股胜率翻倍并赚得六位数收益。
- 成交量很重要:成交量记录股票交易,能反映机构投资者动向,避免被股价 “假突破” 迷惑。
- 分析步骤:设置成交量指标,观察机构建仓迹象,根据成交量线索找买卖点,结合股价走势,选好入场时机,锁定利润。
- 并非万无一失:方法虽有效,但股市有风险,不可能百分百准确,要坚持策略才能有收获。
感谢您阅读到最后,希望这篇文章为您带来了新的启发和实用的知识!如果觉得有帮助,请不吝点赞和分享,您的支持是我持续创作的动力。祝您投资顺利,收益长虹!如果对文中内容有任何疑问,欢迎留言,我会尽快回复!
本文内容仅限技术探讨和学习,不构成任何投资建议。