机器人自主学习方法学习

各类算法的优缺点

原理:

该结构中初始的知识为0,不存在任何先验知识,让机器人与环境交互不断获得经验,是一个增量学习的过程。

算法举例

基于强化学习的开源算法及工具

OpenAI Gym:用于开发和比较强化学习算法的工具包 https://github.com/openai/gym

百度推出的机器人控制算法框架 PaddleRobotics:https://github.com/PaddlePaddle/PaddleRobotics

基于模仿学习的开源算法及工具

智能模仿学习的开源新星 https://gitcode.com/HumanCompatibleAI/imitation

基于迁移学习的开源算法及工具

清华大学开源迁移学习算法库 https://github.com/thuml/Transfer-Learning-Library

基于大模型学习的开源算法及工具

LLaMA是由meta2023年推出的大模型 https://github.com/facebookresearch/llama

斯坦福机器人Mobile ALOHA https://tonyzhaozh.github.io/aloha/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值