实变函数(八) Functions and Convergence

这一节我们讨论函数的各种可能的收敛。事实上,从分析学伊始,收敛性就开始陪伴我们一直到大学毕业。我们可以先重温一下在分析学中关于函数列收敛的定义。

点点收敛

如果我们说 f n ( x ) f_n(x) fn(x)点点收敛于 f ( x ) f(x) f(x),事实上就是说只要对于每一个 x x x,当前点下的 f n f_n fn都能够收敛于当前点下的 f f f即可。我们用数学语言给出这样的一个描述:
f n → f ⇔ ∀ x ∈ X , f n ( x ) → f ( x ) ⇔ ∀ x ∈ X , ∀ ε > 0 , ∃ N ∈ N + , ∀ n > N , ∣ f n ( x ) − f ( x ) ∣ < ε \begin{align} f_n\rightarrow f &\Leftrightarrow \forall x\in X,f_n(x)\rightarrow f(x)\\ &\Leftrightarrow \forall x\in X,\forall \varepsilon >0,\exists N\in\mathbb{N^+},\forall n>N,\vert f_n(x)-f(x)\vert<\varepsilon \end{align} fnfxX,fn(x)f(x)xX,ε>0,NN+,n>N,fn(x)f(x)<ε通过上面对于点点收敛的定义不难看出,我们真的就是如同点点收敛的字面含义一样,要求对于每一个在定义域中的 x x x,都必须满足数列收敛的定义。可以看出,当固定了 x = x 0 x=x_0 x=x0后,函数列 f n ( x ) f_n(x) fn(x)完全就退化为了一个数列 f n ( x 0 ) f_n(x_0) fn(x0),函数也退化为了一个数 f ( x 0 ) f(x_0) f(x0),事实上就完全将问题情形转化为了数列收敛的情形了。emmm…确实有点诧异,点点收敛某种意义上还是一个数列收敛,那么函数本身的特性似乎就失去了意义,因为我们好像在每个点上孤立地研究收敛性。在这个思考下,一致收敛应运而生。

一致收敛

按照先前的想法,我们要能够将各个点点收敛联系起来的,此时我们要从数学语言的角度来分析一下了。按照点点收敛的定义,实际上对于每一个特定的 x x x和一个特定的任意小的正数 ε \varepsilon ε,要保证能够取到一个临界值 N N N,使得在临界值 N N N之后,函数列就能够无限靠近于极限函数了。所以点点收敛的关键就是在于这个 N N N的取法上了。显然此 N N N将受制于 x x x ε \varepsilon ε,或者说 N = N ( x , ε ) N=N(x,\varepsilon) N=N(x,ε),即每改变一个点(改变一个 x x x)以及改变一个收敛程度(改变一个 ε \varepsilon ε),都将会影响 N N N的取法,这将在以后的一些例子上得到体现。其实解决点点收敛孤立性的关键就在于 N N N上,如果说我们能够追求到一个对于任意的 x ∈ X x\in X xX表现一致的 N N N,那么就将各个孤立的点联结成为了一个整体。这样说似乎还是有些晦涩,简单来说,就是我们如果我们能够让 ∀ x ∈ X \forall x\in X xX拥有一个共同的临界值 N N N,能够让临界值以后的函数列都能以 ε \varepsilon ε的收敛程度逼近 f ( x ) f(x) f(x)。这样看来,似乎只要有取得到的 N = N ( x , ε ) = N ( ε ) N=N(x,\varepsilon)=N(\varepsilon) N=N(x,ε)=N(ε)即可。点到为止,一致收敛的定义似乎呼之欲出了,我想最直观的想法其实就是如下的定义了。
我先给一个收敛程度( ε \varepsilon ε),然后能够找到一个对所有 x x x都一致成立的临界值( N N N),在此临界值之后的函数列均能按照给定的收敛程度收敛。翻译成数学语言即
∀ ε > 0 , ∃ N ∈ N + , ∀ n > N , ∣ f n ( x ) − f ( x ) ∣ < ε   f o r   ∀ x ∈ X \forall\varepsilon>0,\exists N\in\mathbb{N^+},\forall n>N,\vert f_n(x)-f(x)\vert<\varepsilon\: {\rm for}\:\forall x\in X ε>0,NN+,n>N,fn(x)f(x)<εforxX实际上更加标准的定义如下
∀ ε > 0 , ∃ N ∈ N + , ∀ n > N , ∀ x ∈ X , ∣ f n ( x ) − f ( x ) ∣ < ε \forall\varepsilon>0,\exists N\in\mathbb{N^+},\forall n>N,\forall x\in X,\vert f_n(x)-f(x)\vert<\varepsilon ε>0,NN+,n>N,xX,fn(x)f(x)<ε根据此数学表达式也能显式地看出, N N N应当仅与 ε \varepsilon ε有关,因为我们实际上只给出了特定的收敛程度。这就是一致收敛的定义,我们或许可以发现,如果将点点收敛中的每个 N ( x , ε ) N(x,\varepsilon) N(x,ε)拿到,而后令 N ⋆ = sup ⁡ { N ( x , ε ) ∣ x ∈ X , ε > 0 } N^{\star}=\sup\{N(x,\varepsilon)|x\in X,\varepsilon>0\} N=sup{N(x,ε)xX,ε>0},就可以满足一致收敛中关于临界值的定义。此时的 N ⋆ N^{\star} N无疑能够让所有的 x ∈ X x\in X xX都满足点点收敛,但是它并不一定存在。如果此数不存在,实际上就能够确定此函数不一致收敛了,这是不一致收敛的充要条件之一。

放松条件的收敛

重头戏来了。事实上我们对于函数列收敛的要求似乎还是过于严格了,从这里开始便是实变函数的内容了。这里事实上可以直接定义两个放松条件的收敛——几乎处处(almost everywhere,a.e.)收敛和几乎一致(almost uniformly,a.u.)收敛。先前我们接触过几乎处处相等的概念,这里实际上也是相同的。几乎处处收敛是说,若集合 E E E上去掉了一个零测度集合后的区域处处收敛,那么即为几乎处处收敛,换言之 m E [ f n ↛ f ] = 0 mE[f_n\not\rightarrow f]=0 mE[fnf]=0。而几乎一致收敛则是说若集合 E E E去掉了一个可以任意小的测度集合后的区域一致收敛,那么即为几乎一致收敛。实际上这里的定义的确有些逆天,这个任意小我们通常表示为 δ > 0 \delta>0 δ>0,显然并不是和几乎处处收敛那么简单地直接可以去掉一个零测度集进行定义的。从数学语言的角度来说,实际上也很简单,如下
f n → f    a . e .    E ⇔ m E [ f n ↛ f ] = 0 f_n\rightarrow f\;a.e. \;E\Leftrightarrow mE[f_n\not\rightarrow f]=0 fnfa.e.EmE[fnf]=0以及 f n → f    a . u .    E ⇔ ∀ δ > 0 , ∃ e ∈ E , m e < δ , f n ⇉ f ( x ∈ E − e ) f_n\rightarrow f\;a.u.\;E\Leftrightarrow \forall\delta>0,\exists e\in E,me<\delta,f_n\rightrightarrows f(x\in E-e) fnfa.u.Eδ>0,eE,me<δ,fnf(xEe)这就是将上述的思想用数学语言简单地翻译了一下,没什么好说的。

依测度收敛

我们最先接触依 ⋯ \cdots 收敛似乎是在概率论中,当时为了引入大数定律给出了依概率收敛的概念(虽然当时并没有好好听o(╥﹏╥)o)。这里依测度收敛实际上就是依概率收敛的一个推广,总是采取一种正难则反的对策进行的定义——所有函数列与极限函数误差超过某个任意小数构成的集合的测度应当随着 n → + ∞ n\rightarrow+\infty n+而趋于零,翻译过来就是 f n ⇒ f ⇔ ∀ σ > 0 , lim ⁡ n → + ∞ m E [ ∣ f n − f ∣ ≥ σ ] = 0 f_n\Rightarrow f\Leftrightarrow \forall\sigma>0,\lim_{n\rightarrow+\infty}mE[\vert f_n-f\vert\ge\sigma]=0 fnfσ>0,n+limmE[fnfσ]=0说实话,里面 ∣ f n − f ∣ ≥ σ \vert f_n-f\vert\ge\sigma fnfσ这个某种意义上和 f n ↛ f f_n\not\rightarrow f fnf是相同的,而且本身这个定义和几乎处处收敛的定义就相当相似,我们在以后将会看到,在某些附加条件下,二者的确是等价的,但是二者的关注程度显然不同。几乎处处收敛,显然关注的就是点构成的集合,更关注 x x x;而依测度收敛则更加关心 n n n无穷大后的情况,更关注 n n n。 我们直接给出依测度收敛的性质,它具有如下四条性质。

(1) f n ⇒ f , f n ⇒ h f_n\Rightarrow f ,f_n\Rightarrow h fnf,fnh f = h    a . e .    E f=h\;a.e.\;E f=ha.e.E

这条性质也是比较容易证明的。因为 m E [ f ≠ h ] ≤ m E [ ∣ f − h ∣ ≥ σ ] = m E [ ∣ f − f n + f n − h ∣ ≥ σ ] ≤ m E [ ∣ f n − f ∣ + ∣ f n − h ∣ ≥ σ ] ≤ m E [ ∣ f n − f ∣ ≥ σ ] + m E [ ∣ f n − h ∣ ≥ σ ] = 0 \begin{align} mE[f\not=h]&\le mE[\vert f-h\vert\ge\sigma]=mE[\vert f-f_n+f_n-h\vert\ge\sigma]\le mE[\vert f_n-f\vert+\vert f_n-h\vert\ge\sigma]\\ &\le mE[\vert f_n-f\vert\ge\sigma]+mE[\vert f_n-h\vert\ge\sigma]=0\end{align} mE[f=h]mE[fhσ]=mE[ffn+fnhσ]mE[fnf+fnhσ]mE[fnfσ]+mE[fnhσ]=0这样就证明了 m E [ f ≠ h ] = 0 mE[f\not=h]=0 mE[f=h]=0

(2) f n ⇒ f , g n ⇒ g f_n\Rightarrow f,g_n\Rightarrow g fnf,gng f n + g n ⇒ f + g f_n+g_n\Rightarrow f+g fn+gnf+g

这就是依测度收敛的加法封闭性。证明也比较简单,同样是使用三角不等式,此证明及以后的证明忽略。

(3) f n ⇒ f , g n ⇒ g , f n g n ⇒ f g f_n\Rightarrow f,g_n\Rightarrow g,f_ng_n\Rightarrow fg fnf,gng,fngnfg

这就是依测度收敛的乘法封闭性。

(4) f n ⇒ f , ∣ f n ∣ ⇒ ∣ f ∣ f_n\Rightarrow f,\vert f_n\vert\Rightarrow \vert f\vert fnf,fnf

这就是依测度收敛的绝对值封闭性。

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值