PDE数值解(二) 截断误差

文章讨论了PDE数值解中截断误差的概念,通过差分格式的示例,展示了如何通过Taylor级数展开来量化这种误差,指出它是数值方法的常见特性,且误差量级为(τ+h)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

既然是PDE的数值解,就避免不了一个问题——截断误差。如何理解PDE中的截断误差呢?

对于一个差分格式,事实上只需要将 u u u本身直接代入就能够得到截断误差。举例来说,某扩散方程的差分格式为
u j n + 1 − u j n τ − a u j + 1 n − u j n h = 0 \frac{u_{j}^{n+1}-u_{j}^n}{\tau}-a\frac{u_{j+1}^n-u_{j}^n}{h}=0 τujn+1ujnahuj+1nujn=0只需要将 u j n u_{j}^{n} ujn替换为 u ( x j , t n ) u(x_j,t_n) u(xj,tn),上式即变为了
u ( x j , t n + 1 ) − u ( x j , t n ) τ − a u ( x j + 1 , t n ) − u ( x j , t n ) h = ξ \frac{u(x_j,t_{n+1})-u(x_j,t_n)}{\tau}-a\frac{u(x_{j+1},t_n)-u(x_{j},t_n)}{h}=\xi τu(xj,tn+1)u(xj,tn)ahu(xj+1,tn)u(xj,tn)=ξ接下来就是对上式的化简,显然可以利用刻在骨子里面的Taylor展开。
1 τ [ ∑ i = 0 + ∞ ∂ i u ∂ t i i ! τ i − u ] − a h [ ∑ i = 0 + ∞ ∂ i u ∂ x i i ! h i − u ] = ξ \frac{1}{\tau}\left[\sum_{i=0}^{+\infty}\frac{\frac{\partial^{i}u}{\partial t^{i}}}{i!}\tau^{i}-u\right]-\frac{a}{h}\left[\sum_{i=0}^{+\infty}\frac{\frac{\partial^{i}u}{\partial x^{i}}}{i!}h^i-u\right]=\xi τ1[i=0+i!tiiuτiu]ha[i=0+i!xiiuhiu]=ξ结合原PDE方程化简一下就可以得到如下结果
ξ = ∑ i = 2 + ∞ ∂ i u ∂ t i i ! τ i − 1 − a ∑ i = 2 + ∞ ∂ i u ∂ x i i ! h i − 1 = o ( τ + h ) \xi = \sum_{i=2}^{+\infty}\frac{\frac{\partial^{i}u}{\partial t^{i}}}{i!}\tau^{i-1}-a\sum_{i=2}^{+\infty}\frac{\frac{\partial^{i}u}{\partial x^{i}}}{i!}h^{i-1}=o(\tau+h) ξ=i=2+i!tiiuτi1ai=2+i!xiiuhi1=o(τ+h这就是此PDE数值解的截断误差。事实上是套路性非常强的一个东西。
(未完待续)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值