实变函数(一)Countable Set && Uncountable Set

可数集(Countable Set,下称CS)与不可数集(Uncountable Set,下称US),本质上就是将无限集合按照是否可以进行“计数”进行划分的过程。

在定义CS和US之前,需要先提出对等的概念(一说等势,在离散数学中更多被用到。)。对等,本质上就是能否确切地寻找到两个集合之间的一个1-1映射,如果能够找到,就说这两个集合是对等的,数学语言表达如下
i f    ∃ f : A → B , f    i s    1 − 1    m a p , t h e n    A ∼ B if\;\exists f:A\rightarrow B,f\; is \; 1-1\;map,then\;A\sim B iff:AB,fis11map,thenAB
接下来我们就可以简单地定义可数集和不可数集,以及所谓的这些集合中所包含的元素的数量。实质上,CS就是所有与 Z + \mathbb{Z}^+ Z+对等的集合,而US则是所有与 R \mathbb{R} R对等的集合。如此听来似乎相当简单,因为实质上有了这个定义,我们总是能够较为轻松地判断一个集合,是否为CS\US,只需要判断是否存在对等关系即可了。对于方便我们寻找1-1映射的,我们自然是可以如此判断,下面,我们就将这些能够直接通过寻找双射的方式即可判断CS\US的集合纳入一个标题。

可直接寻找双射关系判断CS\US

首先我们来看CS。

  1. 全体互异数组。数组一定可以写成 a r r a y = { a 1 , a 2 , a 3 , ⋯ ∣ a i ≠ a j , i f    i ≠ j } = { a i ∣ i ∈ Z + , a i ≠ a j , i f    i ≠ j } array=\{a_1, a_2, a_3,\cdots|a_i \neq a_j,if\;i\neq j\}=\{a_i|i\in \mathbb{Z}^+,a_i\neq a_j,if\;i\neq j\} array={a1,a2,a3,ai=aj,ifi=j}={aiiZ+,ai=aj,ifi=j},因此只需要给出映射 ϕ ( a i ) = i \phi(a_i)=i ϕ(ai)=i,显然 ϕ \phi ϕ为双射。

其次就是US。

  1. (0,1)。实质上,只需要使用映射 ϕ ( x ) = tan ⁡ ( x ) \phi(x)=\tan(x) ϕ(x)=tan(x),此时显然有 ( 0 , 1 ) → ( − ∞ , + ∞ ) (0,1)\rightarrow(-\infty,+\infty) (0,1)(,+),并且显然 ϕ ( x ) \phi(x) ϕ(x) ( 0 , 1 ) (0,1) (0,1)上的单调函数,即为双射。

事实上,可直接寻找双射关系的判断方式并不多,笔者将会在后续学习过程中继续补充案例,下面我们将重点放在基于运算和夹逼的判断方式上,此前需要引入几个引理。

(引理1) i f    A i    i s    C S , t h e n    ⋃ i = 0 + ∞ A i    i s    C S if\;A_i\; is\;CS,then\;\bigcup_{i=0}^{+\infty} A_i\;is\;CS ifAiisCS,theni=0+AiisCS

(引理2) i f    A i    i s    C S , t h e n    ∏ i = 0 n A i    i s    C S if\;A_i\; is\;CS,then\;\prod_{i=0}^{n} A_i\;is\;CS ifAiisCS,theni=0nAiisCS

(引理3) i f    A i    i s    U S , t h e n    ∏ i = 0 + ∞ A i    i s    U S if\;A_i\; is\;US,then\;\prod_{i=0}^{+\infty} A_i\;is\;US ifAiisUS,theni=0+AiisUS

(引理4) i f    c a r d ( A i ) = n    , t h e n    ∏ i = 0 + ∞ A i    i s    U S if\;{\rm card}(A_i)=n\;,then\;\prod_{i=0}^{+\infty} A_i\;is\;US ifcard(Ai)=n,theni=0+AiisUS

当我们进一步定义了量化可数集和不可数集的方式——基数(cardinal number)后,事实上我们有更简单的描述以上四个引论的方式,就是如下的四个算式:
a 2 = a , a n = a , c a = c , n a = c a^2=a,a^n=a,c^a=c,n^a=c a2=a,an=a,ca=c,na=c事实上,我们做了规定 , c a r d ( C S ) = a , , c a r d ( U S ) = c {\rm, card}(CS)=a,{\rm, card}(US)=c ,card(CS)=a,,card(US)=c,如此才得出了上述的关系式。尽管只有这些定理,但是通过这种思想我们能够轻易地得出数不胜数的集合是否是CS/US。

基于引理判断CS/US

  1. 有理数集:事实上,可以将有理数集表达为 Q = { p q ∣ p , q ∈ Z } \mathbb{Q}=\{\frac{p}{q}|p,q\in\mathbb{Z}\} Q={qpp,qZ}。事实上如果我们能够证明 Z    i s    C S \mathbb{Z}\;is\;CS ZisCS,而后由于 Q = Z × Z = a 2 = a \mathbb{Q}=\mathbb{Z}\times\mathbb{Z}=a^2=a Q=Z×Z=a2=a,这样就能够证明出 Q    i s    C S \mathbb{Q}\;is\;CS QisCS了。下证 Z    i s    C S ⇔ Z ∼ Z + \mathbb{Z}\;is\;CS\Leftrightarrow\mathbb{Z}\sim \mathbb{Z}^+ ZisCSZZ+。我们又知道, Z = Z − ∪ { 0 } ∪ Z + \mathbb{Z}=\mathbb{Z}^-\cup\{0\}\cup\mathbb{Z}^+ Z=Z{0}Z+,显然 Z − ∼ Z + ∣ f : ϕ ( n ) = − n \mathbb{Z}^-\sim\mathbb{Z}^+|f:\phi(n)=-n ZZ+f:ϕ(n)=n,因此 Z −    i s    C S \mathbb{Z}^-\;is\;CS ZisCS,因此 Z = a + 1 + a = 2 a + 1 = a \mathbb{Z}=a+1+a=2a+1=a Z=a+1+a=2a+1=a,因此 Z    i s    C S \mathbb{Z}\;is\;CS ZisCS,这样回溯过去就能证明 Q    i s    C S \mathbb{Q}\;is\;CS QisCS
    证明有理数集是CS的方式有很多,这里采用了一种较为直观的方式。
  2. Q ∞ \mathbb{Q}^{\infty} Q:先给出定义 Q ∞ = { ( r 1 , r 2 , ⋯   , r n , ⋯   ) : r i ∈ Q , i = 1 , 2 , ⋯   } \mathbb{Q}^{\infty}=\{(r_1,r_2,\cdots,r_n,\cdots):r_i\in\mathbb{Q},i=1,2,\cdots\} Q={(r1,r2,,rn,):riQ,i=1,2,}。这个问题很好地点出了夹逼的用法。首先我们直接写出 c a r d ( Q ∞ ) = a a {\rm card}(\mathbb{Q}^{\infty})=a^a card(Q)=aa,原因很简单,因为 Q ∞ = ∏ i = 1 + ∞ Q \mathbb{Q}^{\infty}=\prod_{i=1}^{+\infty}\mathbb{Q} Q=i=1+Q。那么如何判断 a a a^a aa的值呢?显然 a > n a>n a>n,而 n a = c n^a=c na=c,因此 a a > c a^a>c aa>c;又 a < c a<c a<c,因此 a a < c a = c a^a<c^a=c aa<ca=c,这样就证明了 a a = c a^a=c aa=c。因此 Q ∞    i s    U S \mathbb{Q}^{\infty}\;is\;US QisUS

    基于引理进行判断的CS/US案例相当之多,在笔者的实变学习之路中会慢慢继续补充。
  • 40
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值