实变函数(五) Cantor Set

对于Cantor Set,我们只需要讲一下其基本性质和定义方式即可。Cantor Set,事实上就是对一个0,1闭集进行某种迭代的不断三分而形成的。下面我们使用文字描述的形式,来还原一下有限阶的Cantor Set是如何生产出来的。

未划分前: [ 0 , 1 ] [0,1] [0,1]
划分一次: [ 0 , 1 3 ] , [ 2 3 , 1 ] [0,\frac{1}{3}],[\frac{2}{3},1] [0,31],[32,1]
划分二次: [ 0 , 1 9 ] , [ 2 9 , 1 3 ] , [ 2 3 , 7 9 ] , [ 8 9 , 1 ] [0,\frac{1}{9}],[\frac{2}{9},\frac{1}{3}],[\frac{2}{3},\frac{7}{9}],[\frac{8}{9},1] [0,91],[92,31],[32,97],[98,1]
划分三次: [ 0 , 1 27 ] , [ 2 27 , 1 9 ] , [ 2 9 , 7 27 ] , [ 8 27 , 1 3 ] , [ 2 3 , 19 27 ] , [ 8 9 , 25 27 ] , [ 26 27 , 1 ] [0,\frac{1}{27}],[\frac{2}{27},\frac{1}{9}],[\frac{2}{9},\frac{7}{27}],[\frac{8}{27},\frac{1}{3}],[\frac{2}{3},\frac{19}{27}],[\frac{8}{9},\frac{25}{27}],[\frac{26}{27},1] [0,271],[272,91],[92,277],[278,31],[32,2719],[98,2725],[2726,1]

可以看出,就是将上一步中的闭集每次去掉中间的那个区间,这样就可以做出一个递归,当这个递归无限进行下去,就能得到最终的Cantor Set。未划分前整个闭区间的长度为 1 − 0 = 1 1-0=1 10=1,当划分一次后,总共只有 2 2 2个区间,每个区间的长度是先前的 1 / 3 1/3 1/3,因此总长度为 2 × 1 / 3 2\times 1/3 2×1/3;以此类推,当划分了 n n n次后的Cantor集的长度为
L ( n ) = 2 n × ( 1 / 3 ) n = ( 2 3 ) n → 0 ∣ n → + ∞ L(n)=2^{n}\times(1/3)^{n}=\left(\frac{2}{3}\right)^n\rightarrow0|_{n\rightarrow+\infty} L(n)=2n×(1/3)n=(32)n0n+因此可以得出Cantor集的长度实际上为零。到此为止似乎还没有什么可诧异的,无非就是说Cantor集没有长度,可能这就是由很多的点组成的。事实上也是如此,我们将给出几条Cantor集比较“诡异”的几条性质,并且稍微点出证明方式。

定理1 Cantor集中不存在内点。

很简单的证明方式,如果我取一个点 x ∈ C n x\in C_n xCn,假设的确存在一个邻域 U ( x , δ 0 ) ⊆ C n U(x,\delta_0)\subseteq C_n U(x,δ0)Cn,那么接下来再进行 N N N次数的迭代后,总能够让有点的区间长度 ( 2 / 3 ) n + N (2/3)^{n+N} (2/3)n+N小于 2 δ 0 2\delta_0 2δ0,只要 N > log ⁡ 2 / 3 2 δ 0 N>\log_{2/3}2\delta_0 N>log2/32δ0即可。

定理2 Cantor集中全为聚点,没有孤立点。

事实上,如果我们取了一个点 x ∈ C n x\in C_n xCn,那么只要取邻域 U 0 = U ( x , max ⁡ [ d ( x , C n i a ) , d ( x , C n i b ) ] ) U_0=U(x,\max[d(x,C_{ni}^a), d(x,C_{ni}^b)]) U0=U(x,max[d(x,Cnia),d(x,Cnib)]),那么必然有 U 0 ∩ ( C n − { x } ) ≠ ∅ U_0\cap (C_n-\{x\})\neq \varnothing U0(Cn{x})=,因为 x x x不可能同时等于 C n i a C_{ni}^a Cnia C n i b C_{ni}^b Cnib,因而必然不为空集。解释: C n i a C_{ni}^a Cnia代表 x x x所处于的 C n C_n Cn的区间(假定是第 i i i个)的左端点值, C n i b C_{ni}^{b} Cnib也是同理。

定理3 Cantor集的基数为 c c c

这个证明方法仍然用到了进制学。Cantor集合事实上非常巧妙地将所有小数形式中带“1”的数都去除掉了。经过一个进制转换网站进行验证,可以发现,第一次去掉的开集 ( 1 / 3 , 2 / 3 ) (1/3,2/3) (1/3,2/3)在三进制中就是 ( 0.1 , 0.2 ) (0.1,0.2) (0.1,0.2);第二次去掉的开集 ( 1 / 9 , 2 / 9 ) , ( 7 / 9 , 8 / 9 ) (1/9,2/9),(7/9,8/9) (1/9,2/9),(7/9,8/9)在三进制中就是 ( 0.01 , 0.02 ) , ( 0.21 , 0.22 ) (0.01,0.02),(0.21,0.22) (0.01,0.02),(0.21,0.22)。可以看到第一次去掉就能够将所有第一个小数位为1的小数去掉,第二次就能将所有第二个小数位为1的小数去掉,以此类推事实上可以说Cantor集中的所有数是不存在“1”这个数字的。那么事实上只要将 x ∈ C x\in C xC f ( x ) = x / 2 f(x)=x/2 f(x)=x/2这个变换即可。此时 x / 2 x/2 x/2显然是闭区间 [ 0 , 1 ] [0,1] [0,1]的二进制数,也就是说 C ⇔ [ 0 , 1 ] C\Leftrightarrow [0,1] C[0,1] C ‾ ‾ = c \overline{\overline{C}}=c C=c

关于Cantor集的概念和性质还有很多,在此不再推广。

  • 32
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值