序列决策问题(Sequential Decision-Making Problem)

序列决策问题(Sequential Decision-Making Problem)是强化学习(Reinforcement Learning, RL)的核心研究内容,其核心思想是:​​智能体(Agent)需要在连续的时间步骤中,通过与环境(Environment)的交互,选择一系列动作(Actions),以最大化长期累积奖励(Cumulative Reward)​​。


​1. 序列决策问题的定义​

在序列决策问题中:

  • ​动态性​​:每个动作的选择不仅影响当前奖励,还会影响后续状态(State)和未来的奖励。
  • ​目标​​:找到一种策略(Policy),使得从初始状态开始,所有时间步的期望累积奖励最大化。
  • ​数学形式​​:通常建模为马尔可夫决策过程(Markov Decision Process, MDP),这是RL的标准框架。

​2. 关键要素

序列决策问题通过​​马尔可夫决策过程(MDP)​​形式化,包含以下要素:

  1. ​状态空间(State Space, S)​​:环境可能的所有状态集合。
  2. ​动作空间(Action Space, A)​​:智能体可执行的动作集合。
  3. ​转移函数(Transition Function, T)​​:T(s,a,s′)=P(s′∣s,a),表示在状态s执行动作a后转移到状态s′的概率。
  4. ​奖励函数(Reward Function, R)​​:R(s,a,s′)表示从状态s执行动作a转移到s′获得的即时奖励。
  5. ​折扣因子(γ∈[0,1))​​:用于权衡当前奖励与未来奖励的重要性。

​3. 策略(Policy)与价值函数(Value Function)​

  • ​策略(π​​):定义智能体在状态s下选择动作的规则。
    • 确定性策略:π(s)→a。
    • 随机策略:π(a∣s)表示在状态s选择动作a的概率。
  • ​价值函数​​:
    • ​状态价值函数(Vπ(s)​​):在状态s下遵循策略π的期望累积奖励。
    • ​动作价值函数(Qπ(s,a)​​):在状态s执行动作a后遵循策略π的期望累积奖励。

​4. 核心挑战​

序列决策问题的难点在于:

  1. ​探索与利用(Exploration vs. Exploitation)

    • ​探索​​:尝试新动作以发现潜在的高奖励路径。
    • ​利用​​:根据已有知识选择当前最优动作。
    • 平衡两者是RL算法的核心挑战(例如通过ε-greedy策略或UCB方法)。
  2. ​延迟奖励(Delayed Reward)​​:

      当前动作的影响可能在多个时间步后才显现(例如围棋中某一步可能决定最终胜负)。
  3. ​高维状态空间​​:

      实际应用中状态可能是高维的(如图像输入),需借助深度神经网络进行函数逼近。

​5. 解决方法​

​5.1 基于值函数的方法(Value-Based Methods)​
  • ​Q-Learning​​:
    • 通过更新动作价值函数Q(s,a)逼近最优策略。
    • 贝尔曼方程(Bellman Equation)是理论基础:
    • 深度Q网络(DQN)使用神经网络拟合Q函数。
​5.2 基于策略的方法(Policy-Based Methods)​
  • ​策略梯度(Policy Gradient)​​:
    • 直接优化策略πθ​(a∣s)的参数θ。
    • 通过梯度上升最大化期望累积奖励:
​5.3 模型基方法(Model-Based Methods)​
  • ​学习环境模型​​:
    • 估计转移函数T和奖励函数R,通过规划(Planning)生成策略。
    • 适用于数据稀缺或安全性要求高的场景(如机器人控制)。

​6. 实际应用

  • ​游戏​​:Atari游戏(DQN)、围棋(AlphaGo)、德州扑克(Pluribus)。
  • ​机器人​​:机械臂控制(Model-Based RL)、自动驾驶(在线学习)。
  • ​资源管理​​:智能电网调度、计算资源分配。

​7. 当前研究方向​

  • ​泛化性​​:如何使策略在未见过的环境中有效。
  • ​样本效率​​:减少与环境交互的次数。
  • ​多智能体系统:多个智能体协作或竞争。

​总结​

序列决策问题是强化学习的核心,其复杂性源于动态性、延迟奖励和高维状态空间。通过结合深度学习(如DQN、策略梯度)和经典RL理论(如贝尔曼方程),深度强化学习(Deep RL)在复杂任务中取得了突破性进展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值